首页> 外文期刊>IEEE Transactions on Antennas and Propagation >Efficient 2-D Finite-Element Solution of Vector Wave Equation in a Class of Curved Polygons
【24h】

Efficient 2-D Finite-Element Solution of Vector Wave Equation in a Class of Curved Polygons

机译:一类弯曲多边形中矢量波动方程的二维有限元有效解

获取原文
获取原文并翻译 | 示例

摘要

We propose an efficient finite-element analysis of the vector wave equation in a class of relatively general curved polygons. The proposed method is suitable for an accurate and efficient calculation of the propagation constants of waveguides filled with pieces of homogeneous materials. To apply the method, we first decompose the 2-D problem domain into a set of curved polygons of a specific characteristic. Then, we divide every polygon into a set of triangular elements with two straight edges. Finally, we introduce a set of hierarchical mixed-order curl-conforming vector basis functions inside every triangular element to discretize the vector wave equation. The advantages of the method are as follows. The curved boundaries of the elements are modeled exactly, and hence, there is no approximation in the geometrical modeling. The 2-D integrals of the matrix elements are reduced to 1-D integrals. Therefore, the matrix filling can be performed very fast. The total number of elements due to the discretization of a given domain is very small, and hence, the discretization of the problem domain takes up a very small percentage of the total computational time. We validate the method by comparing the results with those of the Ansoft High Frequency Structure Simulator simulator and investigate the accuracy and efficiency of the method through a numerical example.
机译:我们提出了一类相对通用的弯曲多边形中矢量波方程的有效有限元分析。所提出的方法适合于精确且有效地计算填充有均质材料的波导的传播常数。为了应用该方法,我们首先将二维问题域分解为一组具有特定特征的弯曲多边形。然后,我们将每个多边形划分为一组具有两个直边的三角形元素。最后,我们在每个三角形元素内引入了一组分层的,混合的,符合卷曲度的向量基函数,以离散化向量波方程。该方法的优点如下。元素的弯曲边界是精确建模的,因此,在几何建模中没有近似值。矩阵元素的2D积分减少为1D积分。因此,可以非常快速地进行基质填充。由于给定域的离散化导致的元素总数非常小,因此问题域的离散化仅占总计算时间的很小一部分。我们通过将结果与Ansoft高频结构模拟器仿真器的结果进行比较来验证该方法,并通过一个数值示例研究该方法的准确性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号