首页> 外文期刊>Antennas and Propagation, IEEE Transactions on >Optimizing Data Volume Return for Ka-Band Deep Space Links Exploiting Short-Term Radiometeorological Model Forecast
【24h】

Optimizing Data Volume Return for Ka-Band Deep Space Links Exploiting Short-Term Radiometeorological Model Forecast

机译:利用Ka波段深空链路优化数据量返回,利用短期无线电气象模型预测

获取原文
获取原文并翻译 | 示例

摘要

The goal of this work is to demonstrate how the use of short-term radio-meteorological forecasts can aid the optimization of transferred data volumes from deep-space (DS) satellite payloads to Earth receiving stations. To this aim, a weather forecast (WF) numerical model is coupled with a microphysically oriented radiopropagation scheme in order to predict the atmospheric effects on Ka-band signals in DS links. A regional WFs model is exploited to obtain short-term predictions of the atmospheric state. The microphysically oriented radiopropagation scheme consists in a 3-D radiative transfer model which is used to compute the slant path attenuation and the antenna noise temperature at Ka-band in order to predict the signal-to-noise ratio at the receiving station. As a baseline, the BepiColombo mission to Mercury is chosen. Two prediction methods, statistical and maximization, are introduced and tested in two scenarios: 1) full-numerical scenario, where simulated data are used for evaluating the performances of the prediction techniques; 2) semiempirical scenario, where measured meteorological data are exploited to simulate beacon measurements in clear and rainy conditions. The results are shown in terms of received and lost data volumes and compared with benchmark scenarios. Using short-term radio-meteorological forecasts, yearly data volume return can be increased more than 20% if daily WFs, rather than monthly climatological statistics, are exploited.
机译:这项工作的目的是演示短期无线电气象预报的使用如何帮助优化从深空(DS)卫星有效载荷到地球接收站的传输数据量。为此,将天气预报(WF)数值模型与面向微物理的无线电传播方案结合在一起,以便预测大气对DS链路中Ka波段信号的影响。利用区域WFs模型来获取大气状态的短期预测。微观物理定向的无线电传播方案包含一个3-D辐射传递模型,该模型用于计算Ka波段的倾斜路径衰减和天线噪声温度,以便预测接收站的信噪比。作为基线,选择了BepiColombo前往水星的任务。在两种情况下引入并测试了两种预测方法:统计和最大化:1)全数字情况,其中使用模拟数据评估预测技术的性能; 2)半经验场景,利用测量的气象数据来模拟晴雨天的信标测量。根据接收和丢失的数据量显示结果,并与基准方案进行比较。使用短期的无线电气象预报,如果利用每天的WF而不是每月的气候统计数据,则年度数据量回报可以增加20%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号