首页> 外文期刊>Antennas and Propagation, IEEE Transactions on >A New Family of Exponential-Based High-Order DGTD Methods for Modeling 3-D Transient Multiscale Electromagnetic Problems
【24h】

A New Family of Exponential-Based High-Order DGTD Methods for Modeling 3-D Transient Multiscale Electromagnetic Problems

机译:一种新的基于指数的高阶DGTD方法,用于建模3-D瞬态多尺度电磁问题

获取原文
获取原文并翻译 | 示例

摘要

A new family of exponential-based time integration methods are proposed for the time-domain Maxwell's equations discretized by a high-order discontinuous Galerkin (DG) scheme formulated on locally refined unstructured meshes. These methods, which are developed from the Lawson method, remove the stiffness on the time explicit integration of the semidiscrete operator associated with the fine part of the mesh, and allow for the use of high-order time explicit scheme for the coarse part operator. They combine excellent stability properties with the ability to obtain very accurate solutions even for very large time step sizes. Here, the explicit time integration of the Lawson-transformed semidiscrete system relies on a low-storage Runge-Kutta (LSRK) scheme, leading to a combined Lawson-LSRK scheme. In addition, efficient techniques are presented to further improve the efficiency of this exponential-based time integration. For the efficient calculation of matrix exponential, we employ the Krylov subspace method. Numerical experiments are presented to assess the stability, verify the accuracy, and numerical convergence of the Lawson-LSRK scheme. They also demonstrate that the DG time-domain methods based on the proposed time integration scheme can be much faster than those based on classical fully explicit time stepping schemes, with the same accuracy and moderate memory usage increase on locally refined unstructured meshes, and are thus very promising for modeling 3-D multiscale electromagnetic problems.
机译:针对时域麦克斯韦方程组,提出了一种基于指数的时间积分新方法,该方程通过在局部精炼的非结构化网格上制定的高阶不连续伽勒金(DG)方案离散化。这些从Lawson方法发展而来的方法消除了与网格的精细部分相关联的半离散算子在时间显式积分上的刚度,并允许对粗糙部分算子使用高阶时间显式方案。它们结合了出色的稳定性能,即使在非常大的时间步长下也可以获得非常精确的解决方案。在此,Lawson变换的半离散系统的显式时间积分依赖于低存储的Runge-Kutta(LSRK)方案,从而导致了Lawson-LSRK方案的组合。此外,提出了有效的技术来进一步提高这种基于指数的时间积分的效率。为了有效地计算矩阵指数,我们使用Krylov子空间方法。进行了数值实验,以评估Lawson-LSRK方案的稳定性,验证准确性和数值收敛性。他们还证明,基于提出的时间积分方案的DG时域方法比基于经典完全显式时间步进方案的DG时域方法要快得多,在局部精炼的非结构化网格上具有相同的精度和适度的内存使用率,因此是对于建模3D多尺度电磁问题非常有前途。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号