...
首页> 外文期刊>Annals of the New York Academy of Sciences >Microgravity Experiments on the Effect of Internal Flow on Solidification of Fe-Cr-Ni Stainless Steels
【24h】

Microgravity Experiments on the Effect of Internal Flow on Solidification of Fe-Cr-Ni Stainless Steels

机译:内流对Fe-Cr-Ni不锈钢凝固影响的微重力实验

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A new hypothesis has been developed to explain the effect of internal fluid flow on the lifetime of a metastable phase in solidifying Fe-Cr-Ni alloys. The hypothesis shows excellent agreement with available experimental results, but microgravity experiments are required for complete validation. Certain Fe-Cr-Ni stainless steel alloys solidify from an undercooled melt by a two-step process in which the metastable ferrite phase forms first followed by the stable austenite phase. Recent experiments using containerless processing techniques have shown that the lifetime of the metastable phase is strongly influenced by flow within the molten sample. Simulations using a commercial computational fluid dynamics (CFD) package, FIDAP, were performed to determine the time required for collision of dendrites and compared to experimental delay time. If the convective velocities are strong enough to bend the primary arms, then the secondary arms of adjacent dendrites can touch. The points of collision form low-angle boundaries and result in high-energy sites that can serve as nuclei for the transformation to the stable phase. It has been determined that the convective velocities in electrostatic levitation (ESL) are not strong enough to cause collision. However, in ground-based electromagnetic levitation (EML), the convective velocities are strong enough to cause the dendrites to deflect so that the secondary arms of adjacent dendrites collide. There is quantitative agreement between the numerically determined time to collision and the experimentally observed delay time in EML. The strong internal velocity due to convection within the EML samples is the reason for the observed difference in delay times between ESL and EML. Microgravity testing is essential because the significant change in nucleation behavior occurs between the ranges accessible by ground-based ESL and EML. Testing in microgravity using EML will permit a large range of internal convective velocities including those that are inaccessible in 1 g.
机译:已经开发出新的假设来解释内部流体流动对凝固Fe-Cr-Ni合金中亚稳态相的寿命的影响。该假设与可用的实验结果显示出极好的一致性,但是需要进行微重力实验才能完成验证。某些Fe-Cr-Ni不锈钢合金通过两步过程从过冷的熔体中凝固,在该过程中先形成亚稳态的铁素体相,然后形成稳定的奥氏体相。使用无容器处理技术的最新实验表明,亚稳相的寿命受到熔融样品中流动的强烈影响。使用商业计算流体动力学(CFD)程序包FIDAP进行模拟,以确定树突碰撞所需的时间,并将其与实验延迟时间进行比较。如果对流速度足够强,可以弯曲初级臂,则相邻树枝状晶体的次级臂可以接触。碰撞点形成低角度边界,并导致高能位点,这些位点可充当原子核以转化为稳定相。已确定静电悬浮(ESL)中的对流速度不足以引起碰撞。但是,在基于地面的电磁悬浮(EML)中,对流速度足够强,足以导致树枝状晶体偏转,从而使相邻树枝状晶体的次级臂发生碰撞。在EML中,通过数值确定的碰撞时间与实验观察到的延迟时间之间存在定量一致性。由于EML样品内的对流而产生的强内部速度是观察到的ESL和EML延迟时间差异的原因。微重力测试是必不可少的,因为成核行为的重大变化发生在地面ESL和EML可以到达的范围之间。使用EML在微重力下进行测试将允许大范围的内部对流速度,包括1 g内无法达到的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号