...
首页> 外文期刊>Annals of the New York Academy of Sciences >Advanced Imaging Assessment of Bone Quality
【24h】

Advanced Imaging Assessment of Bone Quality

机译:骨质量高级影像学评估

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Noninvasive and/or nondestructive techniques can provide structural information about bone, beyond simple bone densitometry. While the latter provides important information about osteoporotic fracture risk, many studies indicate that bone mineral density (BMD) only partly explains bone strength. Quantitative assessment of macrostruc-tural characteristics, such as geometry, and microstructural features, such as relative trabecular volume, trabecular spacing, and connectivity, may improve our ability to estimate bone strength. Methods for quantitatively assessing macrostructure include (besides conventional radiographs) dual X ray absorptiometry (DXA) and computed tomography (CT), particularly volumetric quantitative computed tomography (vQCT). Methods for assessing microstructure of trabecular bone noninvasively and/or nondestructively include high-resolution computed tomography (hrCT), microcomputed tomography (micro-CT), high-resolution magnetic resonance (hrMR), and micromagnetic resonance (micro-MR). vQCT, hrCT, and hrMR are generally applicable in vivo; micro-CT and micro-MR are principally applicable in vitro. Despite progress, problems remain. The important balances between spatial resolution and sampling size, or between signal-to-noise and radiation dose or acquisition time, need further consideration, as do the complexity and expense of the methods versus their availability and accessibility. Clinically, the challenges for bone imaging include balancing the advantages of simple bone densitometry versus the more complex architectural features of bone, or the deeper research requirements versus the broader clinical needs. The biological differences between the peripheral appendicular skeleton and the central axial skeleton must be further addressed. Finally, the relative merits of these sophisticated imaging techniques must be weighed with respect to their applications as diagnostic procedures, requiring high accuracy or reliability, versus their monitoring applications, requiring high precision or reproducibility.
机译:除了简单的骨密度测定法外,非侵入性和/或非破坏性技术还可以提供有关骨骼的结构信息。尽管后者提供了有关骨质疏松性骨折风险的重要信息,但许多研究表明,骨矿物质密度(BMD)仅部分解释了骨强度。宏观结构特征(例如几何形状)和微观结构特征(例如相对小梁体积,小梁间距和连接性)的定量评估可能会提高我们估算骨强度的能力。定量评估宏观结构的方法包括(除了传统的X射线照片)双X射线吸收法(DXA)和计算机断层扫描(CT),尤其是体积定量计算机断层扫描(vQCT)。无创和/或非破坏性地评估小梁骨微结构的方法包括高分辨率计算机断层扫描(hrCT),微计算机断层扫描(micro-CT),高分辨率磁共振(hrMR)和微磁共振(micro-MR)。 vQCT,hrCT和hrMR通常适用于体内; micro-CT和micro-MR主要适用于体外。尽管取得了进展,但问题仍然存在。需要进一步考虑空间分辨率和采样大小之间,信噪比与辐射剂量或采集时间之间的重要平衡,以及方法的复杂性和费用以及其可用性和可访问性。在临床上,骨成像的挑战包括在简单的骨密度测定法与更复杂的骨结构特征之间取得平衡,或者在更深的研究需求与更广泛的临床需求之间取得平衡。必须进一步解决外周阑尾骨骼和中心轴向骨骼之间的生物学差异。最后,必须权衡这些复杂的成像技术在其作为诊断程序需要高精度或高可靠性的应用方面的相对优势,而在其监测应用需要高精度或可再现性的情况下进行权衡。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号