首页> 外文期刊>Annals of Mathematics >The space of embedded minimal surfaces of fixed genus in a 3-manifold Ⅳ; Locally simply connected
【24h】

The space of embedded minimal surfaces of fixed genus in a 3-manifold Ⅳ; Locally simply connected

机译:3个歧管Ⅳ中固定属的最小嵌入表面的空间;本地简单连接

获取原文
获取原文并翻译 | 示例

摘要

This paper is the fourth in a series where we describe the space of all embedded minimal surfaces of fixed genus in a fixed (but arbitrary) closed 3-manifold. The key is to understand the structure of an embedded minimal disk in a ball in R~3. This was undertaken in [CM3], [CM4] and the global version of it will be completed here; see the discussion around Figure 12 for the local case and [CM15] for some more details. Our main results are Theorem 0.1 (the lamination theorem) and Theorem 0.2 (the one-sided curvature estimate). The lamination theorem is stated in the global case where the lamination is, in fact, a foliation. The first four papers of this series show that every embedded minimal disk is either a graph of a function or is a double spiral staircase where each staircase is a multivalued graph. This is done by showing that if the curvature is large at some point (and hence the surface is not a graph), then it is a double spiral staircase like the helicoid. To prove that such a disk is a double spiral staircase, we showed in the first three papers of the series that it is built out of N-valued graphs where N is a fixed number. In this paper we will deal with how the multi-valued graphs fit together and, in particular, prove regularity of the set of points of large curvature - the axis of the double spiral staircase.
机译:本文是该系列的第四篇文章,我们描述了固定(但任意)闭合的3个流形中固定类的所有嵌入式最小表面的空间。关键是要了解R〜3中球中嵌入式最小磁盘的结构。这是在[CM3],[CM4]中进行的,其全球版本将在此处完成;有关局部情况,请参见图12周围的讨论;有关更多详细信息,请参见[CM15]。我们的主要结果是定理0.1(分层定理)和定理0.2(单侧曲率估计)。层压定理在整体情况下被陈述,其中层压实际上是一个叶片。本系列的前四篇论文表明,每个嵌入式最小磁盘都是函数图或双螺旋楼梯,其中每个楼梯都是多值图形。这是通过显示如果曲率在某个点处较大(因此曲面不是图形)来完成的,那么它就是像螺旋线一样的双螺旋楼梯。为了证明这种磁盘是双螺旋楼梯,我们在该系列的前三篇论文中证明了它是由N值图构成的,其中N是固定数。在本文中,我们将探讨如何将多值图拟合在一起,特别是证明大曲率点集(双螺旋楼梯的轴)的规则性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号