首页> 外文期刊>Annals of Mathematics and Artificial Intelligence >A new tractable class of constraint satisfaction problems
【24h】

A new tractable class of constraint satisfaction problems

机译:一类新的可处理的约束满足问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper we consider constraint satisfaction problems where the set of constraint relations is fixed. Feder and Vardi (1998) identified three families of constraint satisfaction problems containing all known polynomially solvable problems. We introduce a new class of problems called para-primal problems, incomparable with the families identified by Feder and Vardi (1998) and we prove that any constraint problem in this class is decidable in polynomial time. As an application of this result we prove a complete classification for the complexity of constraint satisfaction problems under the assumption that the basis contains all the permutation relations. In the proofs, we make an intensive use of algebraic results from clone theory about the structure of para-primal and homogeneous algebras.
机译:在本文中,我们考虑约束关系集固定的约束满足问题。 Feder和Vardi(1998)确定了三个系列的约束满足问题,其中包含所有已知的多项式可解决的问题。我们引入了一种新的问题类别,称为准原始问题,与费德和瓦尔迪(1998)所确定的族群无法比拟,并且证明了这一类的任何约束问题都可以在多项式时间内确定。作为该结果的应用,我们证明了在基础包含所有置换关系的前提下,对约束满足问题的复杂性进行了完全分类。在证明中,我们大量使用了关于准原始代数和齐次代数结构的克隆理论的代数结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号