首页> 外文期刊>Analog Integrated Circuits and Signal Processing >Efficient modeling of RF CMOS spiral inductors using generalized knowledge-based neural network
【24h】

Efficient modeling of RF CMOS spiral inductors using generalized knowledge-based neural network

机译:使用基于知识的广义神经网络对RF CMOS螺旋电感器进行高效建模

获取原文
获取原文并翻译 | 示例

摘要

Efficient modeling of RF CMOS spiral inductors by virtue of a novel generalized knowledge-based neural network (GKBNN) is presented. Prior knowledge of on-chip inductors is used for constructing the GKBNN. This new modeling approach also exploits merits of the iterative multi stage algorithm. This GKBNN has much enhanced learning and generalization capabilities. Comparing with the conventional neural network or the knowledge-based neural network, this new GKBNN model can map the input–output relationships with fewer hidden neurons and has higher reliability for generalization. As a consequence, this GKBNN model can run as fast as an approximate equivalent circuit model yet generate results as accurate as detailed electromagnetic simulations. Experiments are included to demonstrate merits and efficiency of this new approach.
机译:借助于新型的基于知识的广义神经网络(GKBNN),对RF CMOS螺旋电感器进行了有效建模。片上电感器的先验知识用于构造GKBNN。这种新的建模方法还利用了迭代多阶段算法的优点。该GKBNN具有大大增强的学习和泛化能力。与传统的神经网络或基于知识的神经网络相比,这种新的GKBNN模型可以映射具有较少隐藏神经元的输入-输出关系,并且具有更高的泛化可靠性。因此,该GKBNN模型的运行速度与近似等效电路模型一样快,但生成的结果与详细的电磁仿真一样准确。实验包括在内,以证明这种新方法的优点和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号