首页> 外文期刊>Analog Integrated Circuits and Signal Processing >Efficient kernel functions for support vector machine regression model for analog circuits’ performance evaluation
【24h】

Efficient kernel functions for support vector machine regression model for analog circuits’ performance evaluation

机译:支持向量机回归模型的高效内核功能,可用于模拟电路的性能评估

获取原文
获取原文并翻译 | 示例

摘要

Support vector machines (SVMs) have been widely used for creating fast and efficient performance macro-models for quickly predicting the performance parameters of analog circuits. These models have proved to be not only effective and fast but accurate also while predicting the performance. A kernel function is an integral part of SVM to obtain an optimized and accurate model. There is no formal way to decide, which kernel function is suited to a class of regression problem. While most commonly used kernels are radial basis function, polynomial, spline, multilayer perceptron; we have explored many other un-conventional kernel functions and report their efficacy and computational efficiency in this paper. These kernel functions are used with SVM regression models and these macromodels are tested on different analog circuits to check for their robustness and performance. We have used HSPICE for generating the set of learning data. Least Square SVM toolbox along with MATLAB was used for regression. The models which contained modified compositions of kernels were found to be more accurate and thus have lower root mean square error than those containing standard kernels. We have used different CMOS circuits varying in size and complexity as test vehicles—two-stage op amp, cascode op amp, comparator, differential op amp and voltage controlled oscillator.
机译:支持向量机(SVM)已被广泛用于创建快速有效的性能宏模型,以快速预测模拟电路的性能参数。这些模型已被证明不仅有效,快速,而且在预测性能时也很准确。内核功能是SVM不可或缺的一部分,可以获取优化和准确的模型。没有正式的方法可以确定哪个内核函数适合一类回归问题。最常用的核是径向基函数,多项式,样条,多层感知器;在本文中,我们探索了许多其他非常规内核函数,并报告了它们的功效和计算效率。这些内核函数与SVM回归模型一起使用,并且这些宏模型在不同的模拟电路上进行了测试,以检查其健壮性和性能。我们已经使用HSPICE来生成一组学习数据。最小二乘SVM工具箱与MATLAB一起用于回归。发现包含改进的内核组成的模型比包含标准内核的模型更准确,因此具有更低的均方根误差。我们已经使用了大小和复杂程度不同的不同CMOS电路作为测试工具-两级运算放大器,共源共栅运算放大器,比较器,差分运算放大器和压控振荡器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号