...
首页> 外文期刊>American Journal of Neuroradiology >Characterization of Cyclic CSF Flow in the Foramen Magnum and Upper Cervical Spinal Canal with MR Flow Imaging and Computational Fluid Dynamics
【24h】

Characterization of Cyclic CSF Flow in the Foramen Magnum and Upper Cervical Spinal Canal with MR Flow Imaging and Computational Fluid Dynamics

机译:利用磁共振流成像和计算流体力学表征大孔和上颈椎管内循环CSF流

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

SUMMARY: CSF flow has been shown to exhibit complex patterns in MR images in both healthy subjects and in patients with Chiari I. Abnormal CSF flow oscillations, according to prevailing opinion, cause syringomyelia and other clinical manifestations that affect some patients with the Chiari I malformation. For this article, we reviewed the literature on PC MR of CSF flow, collected the published CFD studies relevant to CSF flow, and performed flow simulations. PC MR creates cine and still images of CSF flow and measurements of flow velocities. CFD, a technique used to compute flow and pressure in liquid systems, simulates the CSF flow patterns that occur in a specific geometry or anatomy of the SAS and a specific volume of flow. Published PC MR studies show greater peak CSF velocities and more complex flow patterns in patients with Chiari I than in healthy subjects, with synchronous bidirectional flow one of the characteristic markers of pathologic flow. In mathematic models of the SAS created from high-resolution MR images, CFD displays complex CSF flow patterns similar to those shown in PC MR in patients. CFD shows that the pressure and flow patterns vary from level to level in the upper spinal canal and differ between patients with Chiari and healthy volunteers. In models in which elasticity and motion are incorporated, CFD displays CSF pressure waves in the SAS. PC MR and CFD studies to date demonstrate significant alterations of CSF flow and pressure patterns in patients with Chiari I. CSF flow has nonlaminar complex spatial and temporal variations and associated pressure waves and pressure gradients. Additional simulations of CSF flow supplemented by PC MR will lead to better measures for distinguishing pathologic flow abnormalities that cause syringomyelia, headaches, and other clinical manifestations in Chiari I malformations. Abbreviations: CFD, computational fluid dynamics • PC MR, phase-contrast cardiac-gated MR studies • SAS, subarachnoid space The Chiari I malformation, defined by the aberrant position of the cerebellar tonsils in the upper cervical spinal canal, occurs in 0.8% of individuals. Most malformations (referred to here as "symptomatic Chiari I malformation") have signs or symptoms attributable to them, but some ("asymptomatic Chiari I malformation") do not.1 Signs and symptoms include spinal cord cysts (syringomyelia), headache, motor dysfunction, sensory dysfunction, abnormal eye movements, and other neurologic findings. Syringomyelia and other signs and symptoms typically resolve after surgery in patients selected for cranio-occipital decompression. Simple reliable clinical tests to distinguish patients who will respond to surgical treatment from those who will not still are the subject of research. According to prevailing opinion, hyperkinetic CSF flow in the Chiari malformation results in the associated signs and symptoms. CSF oscillates in an out of the cranial vault secondary to the expansion of the brain and intracranial blood vessels with each cardiac systole (Monro-Kellie doctrine). PC MR displays CSF flow patterns, shows spinal cord and tonsil motion, and measures changes in CSF flow velocities during the cardiac cycle. PC MR flow studies show large flow jets and synchronous bidirectional CSF flow.2–11 PC MR studies also show CSF flowing in a symmetric sinusoidal pattern in some cases11 and in less symmetric patterns in others.7 PC MR distinguishes different flow patterns in symptomatic compared with asymptomatic Chiari I malformations, but with imperfect sensitivity and specificity.12 PC MR typically includes flow data in only 1 plane and, therefore, incompletely demonstrates the effect of tonsil position on CSF flow. Furthermore, PC MR does not measure CSF pressures or shear stresses on the spinal cord, parameters that may relate more directly to the formation of syrinx and the production of neurologic symptoms in patients with Chiari I. CFD, an engineering tool used to calculate fluid flow, provides a means to analyze CSF flow patterns. For a 3D model of the domain to be studied and for specified rates of flow, CFD software calculates flow with greater spatial and temporal resolution than that achieved with PC MR and also displays pressures, flow structures, stresses, and pressure waves. It has the power to refine our measurements of CSF flow and to improve our understanding of how anatomic variations alter flow, pressure, and stresses; how CSF flow produces clinical signs and symptoms; and how it may cause a syrinx often distant from the location of CSF obstruction. The purpose of this work was to collate published data from PC MR and from CFD with the goal of depicting CSF flow throughout the cardiac cycle and the SAS. CFD studies are reviewed and compared with PC MR results to test the validity of the CFD models and to improve the characterization of CSF flow. How CSF flow patterns vary with physiologic parameters, such as the shape of the SAS, the elasticity of its walls, the temporal variation in the flow, is illustrated. Modeling the SAS to Simulate CSF Flow The simplest flow models are 1-dimensional. One-dimensional pressure–volume models are used to study how pressure and volume are related and how pressure waves travel and transform in a system. The Monro-Kellie doctrine of oscillatory CSF flow exemplifies a 1-dimensional model of flow and volume. Analysis of pressure-volume relationships in a 1-dimensional model shows that decreasing compliance in the cranial vault increases the pressures in the central spinal canal.13,14 The response of intracranial compliance to craniovertebral decompression may be a significant indicator for the effect of surgery. One-dimensional models have been used to show reduced compliance in the SAS in arachnoiditis and in syringomyelia.14,15 Problems in correlating 1-dimensional models with 3D data limit the suitability of these models for studying human CSF flow patterns. To simulate fluid flow in a space, we created 3D models of that space from geometric shapes or from images or measurements that define the actual boundaries of that space. The physical space is converted to a mathematic model—that is, a series of interconnected points or nodes that define the space. The number of nodes determines the resolution of the model and the length of time needed for computation. The mathematic model, if displayed graphically, appears as a mesh (Fig 1). The boundaries can be assumed to be rigid or nonrigid with properties of elasticity, movement, and compressibility. The physical characteristics of the fluid and its flow volume per unit time (boundary conditions) are specified. The flow may be specified as constant or as varying with time. View larger version (76K): [in this window] [in a new window] Fig 1. An illustration of the computational model of the SAS used in the fluid dynamics simulations. The SAS is displayed as a series of connected points outside the spinal cord and inside the external boundary of the SAS. Flow and pressure are calculated for each point for a fluid with specific properties and flow rates. The number of points and their distance from each other determine the resolution of the computations and the length of time required for computation. Effect on CSF Flow of Varying Anatomy and Boundary Conditions in Rigid Models of the SAS Patients with Chiari I have different SAS dimensions and a different tonsil position than healthy individuals. The posterior fossa is reported to have smaller dimensions in patients with Chiari I than it does in controls.16–19 The cerebellar tonsils extend up to 3 cm into the spinal canal in patients with the Chiari I malformation. The anatomic differences between patients with Chiari I and controls cause differences in CSF flow patterns and velocities. The effect of anatomic variation on CSF flow can be studied in idealized geometric models of the SAS (Fig 2). The models can be created with a combination of geometric shapes, such as funnels and tubes. With CFD, the shapes and dimension can be varied systematically to determine their effect on CSF flow, without the problem of individual variation experienced in clinical studies. In the idealized model, the flow and velocity can be calculated for different boundary conditions, such as different patterns of temporal changes in flow volume during the cardiac cycle (Fig 3). View larger version (54K): [in this window] [in a new window] Fig 2. Sketches illustrating an idealized model of the SAS for CFD. A, A 3D hollow funnel-shaped structure is used to represent the surfaces of the SAS in the lower cranial vault and in the cervical spine. The internal surface of the SAS is created by the idealized model of the brain and spinal cord inserted into a nearly funnel-shaped structure. The transverse line in A represents the location of the craniovertebral junction in the model. B, A sagittal section of the structure shows the SAS as white and tissues external and internal to it as gray. C, An oblique axial section at the craniovertebral junction shows the SAS as white. Reprinted with permission from Linge et al.22 View larger version (13K): [in this window] [in a new window] Fig 3. Line graphs demonstrating different time courses for CSF flow that can be used as input functions in CFD simulations. The y-axis shows the magnitude of flow in positive and negative directions; the x-axis shows time as a decimal fraction of the cardiac cycle. One time course (green line) illustrates CSF flowing in a sinusoidal manner, similar to that observed in some PC MR studies.11 The other (blue line) illustrates CSF flowing in a less symmetric manner as observed in other PC MR studies.7 The 3 red points illustrate first the maximal velocity in a positive direction (systolic flow) and then the change in direction from a positive to a negative flow and then maximal negative (diastolic) flow. Systolic flow lasts a shorter time and has a greater magnitude than diastolic flow in the second plot. Net flow during the cardiac cycle is zero in both plots. The shape and dimensions of the SAS affect CSF flow patterns. By means of CFD, the effect of changing the shape or size of the spinal cord on CSF flow patterns can be demonstrated (Fig 4). Fluid flow in idealized models has an inhomogeneous pattern with flow jets in a portion of the SAS, similar to the flow pattern seen with PC MR in human subjects and patients. With simulations, the effect of changing geometry of flow can be shown (Fig 4). View larger version (37K): [in this window] [in a new window] Fig 4. Examples of CSF velocity simulations for maximal systolic flow for a single axial section in an idealized model of the SAS with different cord shapes or sizes. The asymmetric CSF flow pattern from Fig 3 is assumed for this simulation. The upper image shows velocities for a SAS containing a cord assumed to have a cylindric shape. The next image shows systolic flow when the cord is modeled with an elliptic rather than a circular cross-section. The boundary conditions are otherwise the same as those for the upper image. Note that changing the shape of the spinal cord changes the flow pattern during systole. The bottom image illustrates velocities in a model with a larger cylindric spinal cord and a smaller SAS. Note the marked increase in velocities due to a smaller SAS. Different temporal flow patterns—that is different boundary conditions—produce different CSF flow patterns and velocities. In clinical studies, CSF flow may have a regular pattern approximating a sinusoid or an irregular pattern.2,7,11,13,20,21 Flow cycling with an irregular pattern results in greater velocities and greater flow inhomogeneity than a symmetric sinusoidal flow pattern (Fig 5). CFD is well suited to demonstrating the effects of boundary conditions on flow velocities and flow patterns. View larger version (114K): [in this window] [in a new window] Fig 5. Effect of different temporal patterns of CSF flow on the homogeneity and magnitude of CSF velocities. In the first model used in Fig 4, CSF velocities at peak systolic flow (left column), at the transition to diastolic flow (middle column), and at peak diastolic flow (right column) are shown for an asymmetric temporal flow pattern (top row) and a symmetric sinusoidal flow pattern (lower row). For the asymmetric flow pattern, systolic velocities are greater than those for the symmetric flow pattern. Simultaneous cephalad (negative) and caudad flow (positive) at the transition is more obvious for the asymmetric flow pattern. During peak diastolic flow (right column), both positive and negative flow velocities are noted for the asymmetric flow patterns. Simulations of CSF flow in patient-specific models of the SAS have been made, with the simplifying assumption that the boundaries are rigid.20,22,23 CSF velocities computed for the SAS of a healthy adult volunteer and of a patient with a Chiari I malformation show greater CSF velocities and pressures in the patient with the Chiari malformation than in the healthy subject for both maximal systolic flow and maximal diastolic flow (Fig 6).23 CSF flow patterns in both the patient-specific and the volunteer-specific models duplicate the patterns observed in PC MR images of CSF flow.11 The effect of tissue webs in the SAS and the effect of CSF generation in the fourth ventricle can be added to the patient-specific models.21 View larger version (29K): [in this window] [in a new window] Fig 6. CSF flow velocities and pressures simulated in patient-specific models of the SAS for a healthy subject (left) and a patients with Chiari I (right). A, Pressure distribution at the inlet and along the outer spinal canal surface for the normal (left) and Chiari I (right) models during peak systole. B, Axial sections at the foramen magnum (upper images) and 4 cm lower in the spinal canal (lower images) are shown. The magnitude of flow through the axial section is indicated in centimeters per second by a color scale (reader's far right). The magnitude and direction of secondary (in section) flow are indicated by arrows. Flow is more inhomogeneous and faster in the patient with Chiari than in the healthy subject. Velocities are greater in both subjects at the foramen magnum than at the selected lower section. Courtesy of Alejandro Roldan. With idealized or patient-specific models of the cranial and spinal SAS, simulations show temporal and spatial variations in CSF flow velocities and pressures throughout the SAS and throughout the cardiac cycle, with high spatial and temporal resolution.22 The flow pattern in a cross-section below the foramen magnum resembles the typical flow patterns described in human subjects and patients. In the idealized models and patient-specific models, CSF pressures vary with the position of the tonsils and with the cervical spinal cord level. In a plane 4 cm below the craniovertebral junction in the idealized model, pressure fluctuations have greater magnitude and a different temporal course than at the foramen magnum. Pressures and velocities are increased when the tonsils descend into the spinal canal (Fig 7). Flow simulations and derived 3D animations22 convey a comprehensive view of CSF flow. View larger version (14K): [in this window] [in a new window] Fig 7. Idealized models (above) of the brain, spinal cord, and SAS for simulating CSF flow in a healthy subject (left) and in a patient with Chiari (right). The red lines indicate the volume for which flow was calculated, and the yellow lines, the location of the axial section (below). In the axial sections, the flow patterns are heterogeneous in both the healthy subject (left in A and B) and the patient with Chiari (right in A and B). Peak velocities reach 2.27 cm/s in the healthy volunteer and 5.24 cm/s in the patient with Chiari (color scales to the right of the images). The CFD studies in patient-specific and idealized models show important points about CSF flow: It has significantly greater velocities below the foramen magnum than at the foramen magnum, it has inhomogeneous patterns in both healthy individuals and patients with Chiari I, it has greater velocities lateral to the midline than in the midline, and it has greater flow inhomogeneity and peak CSF velocities in the presence of tonsilar herniation. The study in idealized models shows an additional finding: CSF flows simultaneously in both craniad and cephalad directions (synchronous bidirectional flow) at the end of systole and the end of diastole in both the healthy model and the Chiari model, but to a greater degree in the patient. That study suggests that synchronous bidirectional flow occurs normally, and in patients with Chiari I, it occurs to a such a degree that it can be detected on PC MR. The idealized models are suited to evaluating the effect on CSF flow of variations in the temporal patterns of CSF flow and variations in the elastic properties of the models. The temporal course of flow during the cardiac cycle can be assumed or can be measured with PC MR in patients and in controls. CFD facilitates the investigation of how different temporal flow patterns affect velocities and pressures. Effect of Tissue Elasticity, Motion, and Compressibility on CSF Flow in Nonrigid Models of the SAS Adding tissue elasticity, compressibility. and motion to models of the SAS introduces flow characteristics such as pressure waves not seen in rigid models. Anatomic simplification of the nonrigid models is required to avoid excessive computation times. For CFD, the SAS may be modeled with coaxial fluid-filled tubular structures, 1 or both of which have elastic properties.20,24–28 In such models with elastic properties, pressure waves are evident traveling at approximately 4–20 m/s.5,25 Wave speeds in the model depend on the ratio of cross–sectional areas of the inner and outer tubes.24,26 If a stenosis is incorporated into the model, pressure waves are reflected, and localized pressure fluctuations are magnified.25,26 The steepness of the pressure peak varies with the amount and distribution of flow in the space. Typically, the spinal cord and the dura deform under pressure to a degree that is determined by the elastic properties of the materials. Because the spinal cord is more elastic than the dura, it deforms more. In addition, the dura is constrained with respect to outward movement by fat and bone, while the cord is not constrained by other tissues.29,30 The elasticity of the cord and the dura vary with the direction of measurement, such that the spinal cord deforms more in the radial direction than in the longitudinal direction. Figure 8 illustrates deformation of the spinal cord at the time of peak pressure in the CSF, assuming isotropic elasticity in the cord and a rigid dural surface. The spinal cord deforms before the moment of peak pressure and deforms more as the elasticity increases. View larger version (36K): [in this window] [in a new window] Fig 8. Deformation of the spinal cord secondary to CSF flow calculated by a CFD program that includes equations for the effect of elasticity. For the simulation, isotropic linear elasticity in the spinal cord is assumed. The diagram shows a sagittal view through the SAS and the spinal cord at the time of maximal systolic pressure. The CSF velocity, indicated by the color scale below the model, reaches 4–7 cm/s in the SAS while approaching zero near the dura and spinal cord. The velocity also changes from left (cephalad) to right (caudad), due to the effect of deformation on the cross-sectional area of the spinal cord. When the pressure wave passes along the cord, it initiates a caudad movement of the cord that results in narrowing the cord cephalad to the pulse. Where the cord is narrowed, the CSF velocity is diminished due to the increased volume of the SAS. The spinal cord deformation is indicated in this diagram by arrows that show the direction and colors that show the magnitude according to the scale above. Note that most of the deformation is longitudinal in a caudad direction, but radial deformation of lesser magnitude occurs cephalad to the pressure wave (left). CSF velocity and spinal cord deformation vary with the phase of the cardiac cycle. Integrated for the entire cycle, the spinal cord deformation and the CSF flow are zero at each spinal level. Although not illustrated here, the magnitude of deformation increases as the elasticity in the model is increased. The spinal cord, dura, epidural space, and tonsils not only deform but they also move, contributing to CSF velocity and pressure changes. The cerebellar tonsils appear to move approximately a millimeter in patients and heathy subjects during the cardiac cycle,31 and when the spinal canal is opened during decompressive surgery, they appear to have much larger movements.9 The spinal cord moves in synchrony with the tonsils.32 The cord moves caudally at the start of systolic CSF flow and moves more slowly in a cephalad direction during diastole. The motion of the spinal cord may be greater and earlier in patients with Chiari I with syringomyelia than in those without.7 Transient anteroposterior and right-left movement of the spinal cord is also observed.33,34 The effects of these motions on CSF velocities and pressures require further study. Finally, the different duration of systole in patients with Chiari I may be related to movement of the spinal cord or changes in the shape of the SAS during the cardiac cycle. Conclusions Oscillatory CSF flow has been characterized with PC MR and CFD. PC MR provides measurements of the temporal pattern of CSF flow, the dimensions and shape of the SAS, and the velocities of CSF through the cardiac cycle at specific locations. CFD, by simulating CSF flow in patient-specific and in idealized models of the SAS, provides flow descriptions with greater temporal and spatial resolution than those obtained with PC MR and provides other parameters of flow, such as pressures, pressure gradients, pressure waves, and stresses. Future studies with CFD and PC MR will expand our knowledge of oscillatory CSF flow, depending on the models and hypotheses used in simulations. In this article, we have focused on PC MR data that help to characterize CSF flow and on CFD studies that have the best illustrated CSF flow patterns, pressure patterns, waves, and deformations. The anatomy or geometry of the SAS and the temporal flow pattern determine CSF flow and pressures throughout the SAS. Parameters of CSF flow, such as pressure waves, vary dramatically with the elastic properties of the SAS. The magnitude and speed of these waves may help to explain how and where syringes develop in the spinal cord in patients with the Chiari I malformation or in idiopathic syringomyelia. This review suggests some directions for future studies with CFD and PC MR. It suggests that in the evaluation of patients, CSF flow imaging at several levels may be more useful than single sections to detect the abnormal patterns and velocities and to select patients for craniovertebral decompression.
机译:简介:在健康受试者和Chiari I患者中,CSF流量在MR图像 中均表现出复杂的模式。根据普遍的观点,异常的 CSF流量振荡是导致 脊髓空洞症和其他影响 一些Chiari I畸形患者的临床表现。对于本文, 我们回顾了有关CSF流量的PC MR文献,收集了 发表的与CSF流量相关的CFD研究,并进行了流量 模拟。 PC MR创建CSF流的电影和静止图像 以及流速的测量。 CFD是用于 计算液体系统中的流量和压力的技术,它模拟在 的特定几何形状或解剖结构中发生的CSF 流动模式。 SAS和特定的流量。已发表的PC MR研究 显示,与健康受试者相比,Chiari I患者的CSF峰值峰值更高,流模式更复杂[sup> ,同步双向流s 病理 流的特征标记在由高分辨率 MR图像创建的SAS数学模型中,CFD显示的复杂CSF流型与患者PC MR中显示的 类似。 CFD显示,上脊髓 的压力 和血流模式在水平上各不相同,并且在Chiari患者和健康志愿者之间有所不同。 In在结合了弹性和运动的模型中,CFD 在SAS中显示CSF压力波。迄今为止的PC MR和CFD研究表明,Chiari I患者的CSF流量和 压力模式有显着改变。CSF流量具有非椎板性 复杂的空间和时间变化以及相关的压力 波和压力梯度。补充PC MR的CSF 血流的其他模拟将导致针对导致脊髓空洞症, 头痛和其他临床表现的病理性血流异常的 区分的更好的措施 缩写:CFD,计算流体力学•PC MR,相衬心脏门控MR研究•SAS,蛛网膜下腔Chiari I畸形,由异常位置定义 < / sup>上颈椎管小脑扁桃体的 发生在0.8%的个体中。大多数畸形(此处称为“ 症状性Chiari I畸形”)均具有迹象或 症状,但某些症状(“无症状Chiari I” 1 的体征和症状包括脊髓 脐带囊肿(脊髓空洞症),头痛,运动功能障碍,感觉 功能障碍,异常眼球运动 脊髓空洞症和其他体征和症状通常在接受颅枕减压的患者接受手术后 解决。 简单可靠的临床测试区分将 对手术治疗做出反应的患者与那些仍 仍不接受治疗的患者作为研究对象。 根据流行的观点,运动亢进的CSF流量 Chiari畸形导致相关的体征和症状。 CSF在 扩张后继发于颅穹an内振荡每个 心脏收缩的大脑和颅内血管(Monro-Kellie学说)。 PC MR显示CSF 流动模式,显示脊髓和扁桃体运动,并测量心动周期中CSF流速的 变化。 PC MR流研究显示大流量射流和同步双向 CSF流。 2-11 PC MR研究还显示CSF在流对称正弦波模式在某些情况下 11 ,而在其他情况下则在不太对称的 模式中。 7 PC MR可以区分不同的流型 与无症状的Chiari I畸形相比, 具有敏感性和特异性不佳。 12 PC MR通常 仅包含流量数据1平面,因此不完整地 证实了扁桃体位置对CSF流量的影响。此外, PC MR无法测量 脊髓上的CSF压力或切应力,这些参数可能与syrinx的 形成更直接相关。 Chiari I.患者的神经系统症状的产生 CFD是一种用于计算流体流量的工程工具,它提供了一种 分析CSF流量的方法模式。对于要研究的 域的3D模型以及指定的流量,CFD软件 以比PC MR更高的时空分辨率 来计算流量,并显示压力,流量 结构,应力和压力波浪。它有能力 完善我们对CSF流量的测量,并增进我们对 解剖学变化如何改变流量,压力和应力的理解; 如何脑脊液流量产生临床体征和症状;以及 如何导致经常远离CSF梗阻位置的syrinx。 这项工作的目的是整理来自 PC MR的已发布数据。并从CFD中提取,目的是描绘整个心动周期和SAS中的CSF流量。对CFD研究进行了回顾,并与PC MR结果进行了比较,以测试CFD 模型的有效性并改善CSF流量的特征。 CSF的流型如何随生理参数而变化,例如 的SAS形状,其壁的弹性,流中的时间 的变化 为SAS建模以模拟CSF流最简单的流模型是一维的。一维 压力-体积模型用于研究系统中的压力 和体积如何关联以及压力波如何传播和变换 。振荡CSF流量的Monro-Kellie学说 举例说明了流量和体积的一维模型。一维模型中压力-体积关系的分析 显示, 颅穹ault的顺应性降低会增加中央脊髓管的 压力。 13,14 颅内减压对颅骨减压的反应可能是 的重要指标。一维 模型已用于显示蛛网膜炎和脊髓空洞症在SAS 中的依从性降低。 14,15 相关性 具有3D数据的一维模型限制了这些 模型用于研究人类CSF流型的适用性。 为了模拟空间中的流体流动,我们创建了3D模型 空间中的几何形状或 定义该空间实际边界的图像或测量值中的一个。物理空间 转换为数学模型-即定义空间的一系列 互连点或节点。节点的数量 确定模型的分辨率和计算所需的时间长度 。数学模型(如​​果以图形方式显示 )显示为网格(图1)。边界可以假定为具有弹性, 运动和可压缩性的刚性或非刚性边界。指定了流体的物理特性 及其每单位时间的流量(边界条件) 。可以将流指定为常数,也可以指定为随时间变化的 查看大图(76K):[在此窗口中] [在新窗口中]图1.图示在流体动力学模拟中使用的SAS计算模型的说明。 SAS显示为在脊髓外部和SAS外部边界内的一系列连接点。对于具有特定特性和流速的流体,将为每个点计算流量和压力。点的数量及其彼此之间的距离确定了计算的分辨率以及计算所需的时间长度。与健康个体相比,具有刚性的SAS患者的SAS模型具有不同的解剖结构和边界条件,对CSF流量的影响具有不同的SAS尺寸和不同的tonsil位置。据报道,Chiari I患者后颅窝 的尺寸比对照组小。 16-19 小脑扁桃体 Chiari I畸形的患者向椎管内延伸3 cm。患有Chiari I的患者 与对照之间的解剖学差异会导致CSF血流形态和速度的差异。 解剖变异对CSF血流的影响可以是在SAS的理想几何模型中研究了 (图2)。可以使用几何形状的组合来创建模型 ,例如漏斗和管形的 。使用CFD,可以 系统地改变形状和尺寸以确定其对CSF流量的影响,而 不会出现临床 研究中出现的个体差异问题。 。在理想化模型中,可以针对不同的边界条件 计算流量和速度,例如在心脏 周期内流量随时间变化的不同 模式(图3)。 查看大图(54K):[在此窗口] [在新窗口中]图2.草图说明了CFD SAS的理想模型。 A,使用3D空心漏斗形结构表示SAS在下颅穹顶和颈椎中的表面。 SAS的内表面是由理想的大脑和脊髓模型插入几乎漏斗形的结构创建的。 A中的横线表示模型中颅骨交界处的位置。 B,结构的矢状截面显示SAS为白色,外部和内部组织为灰色。 C,在颅骨椎交界处的斜轴截面显示SAS为白色。经Linge等人许可转载。 22 查看大图(13K):[在此窗口中] [在新窗口中]图3.折线图展示了可以使用的CSF流量的不同时程作为CFD模拟中的输入函数。 y轴显示正向和负向的流量大小; x轴将时间显示为心动周期的十进制分数。一个时间过程(绿线)说明了脑脊液以正弦波方式流动,类似于某些PC MR研究中观察到的情况。 11 另一个时间蓝线(蓝线)说明了CSF以较不对称的方式流动,如在PC MR研究中观察到的那样。其他PC MR研究。 7 3个红色的点首先说明了正方向上的最大速度(收缩流),然后是从正方向到负流的方向变化,然后是最大负向(舒张压)流。与第二幅图中的舒张流相比,收缩流持续时间更短,幅度更大。在两个图中,心动周期期间的净流量均为零。 SAS的形状和尺寸会影响CSF的流型。 通过CFD,可以证明改变 脊髓的形状或大小对CSF的流型的影响。 (图4)。理想模型中的流体流动具有不均匀的模式 ,在SAS的一部分中具有射流,类似于在人类受试者和患者中用PC MR观察到的流动模式。通过 模拟,可以显示 改变流的几何形状的效果(图4)。 查看大图(37K):[在此窗口中] [在新窗口中]图4.在具有不同绳索形状或尺寸的SAS理想模型中,单个轴向截面的最大收缩流的CSF速度模拟示例。对于此模拟,假定来自图3的非对称CSF流动模式。上图显示了包含假定为圆柱形状的帘线的SAS的速度。下一个图像显示了将脐带建模为椭圆形而不是圆形横截面时的收缩流。边界条件与上方图像的边界条件相同。注意,改变脊髓的形状会改变心脏收缩期的血流模式。下图显示了具有较大圆柱脊髓和较小SAS的模型中的速度。注意,由于SAS较小,速度显着增加。不同的时间流模式(即不同的边界 条件)会产生不同的CSF流模式和速度。 在临床研究中,CSF流可能具有规则的模式,近似 正弦曲线或不规则图案。 2,7,11,13,20,21 具有不规则图案的流循环 导致更大的速度和 与对称正弦波流动 模式相比,流动不均匀性更大(图5)。 CFD非常适合演示边界条件对流速和流型的影响。 查看较大版本(114K):[在此窗口中] [在新窗口中]图5.脑脊液流动的不同时间模式对脑脊液速度的均匀性和大小的影响。在图4中使用的第一个模型中,针对不对称的时间流模式(顶部),显示了收缩期血流峰值(左列),舒张期血流转变(中间列)和舒张期血流峰值(右列)的CSF速度。行)和对称的正弦流型(下排)。对于非对称流型,收缩速度要大于对称流型的收缩速度。对于非对称流动模式,过渡时的头流(负)和尾流(正)同时出现更为明显。在峰值舒张期血流(右列)期间,对于非对称血流模式,正向和负向流速均被记录。在SAS 的患者特定模型中,已经对CSF流量进行了模拟,并简化了假设,即 的边界是刚性的。 20,22为健康的成人志愿者和患有Chiari I畸形的患者的SAS计算的,23 CSF速度显示,患有以下疾病的患者的CSF速度和压力更高 最大收缩流量和最大舒张流量的 Chiup畸形高于健康受试者(图6)。 23 模型中,CSF流模式与在CSF 流的PC MR图像中观察到的模式重复。 11 可以将SAS中的组织网的作用和第四脑室中CSF生成的影响 添加到 特定于患者的模型中。 21 查看大图(29K):[在此窗口中] [在新窗口中]图6.在SAS患者特定模型中模拟的CSF流速和压力,用于健康受试者(左)和Chiari I患者(右)。 A,对于正常(左)模型和Chiari I(右)模型,在收缩期峰值时,入口处和沿椎管外表面的压力分布。 B,显示了在大孔的轴向截面(上图)和在椎管内低4 cm的轴上图(下图)。通过轴向部分的流量大小以每秒厘米数的色标表示(读者的最右边)。次级(分段)流量的大小和方向由箭头指示。与健康受试者相比,Chiari患者的血流更加不均匀且速度更快。在两个孔洞中,两个对象的速度都比所选下部的速度大。图片由Alejandro Roldan提供。使用理想的或特定于患者的颅骨和 SAS的模型,模拟显示了整个SAS和 >在整个心动周期中,具有很高的空间和时间 分辨率。 22 大孔下方的横截面中的流动模式类似于典型的在人类受试者和患者中描述的 流动模式。在理想模型和 特定于患者的模型中,CSF压力随扁桃体位置 和颈脊髓水平的变化而变化。在理想化的 模型中颅骨交界处下方4 cm的 平面中,与大孔眼处相比,压力波动具有更大的幅度和不同的 时间过程。当扁桃体下降进入椎管时,压力和速度会增加(图7)。流程模拟和派生的3D动画 22 传达了 CSF流程的全面视图。 查看较大版本(14K):[在此窗口中] [在[新窗口]图7.用于模拟健康受试者(左)和Chiari患者(右)的CSF流动的理想的大脑,脊髓和SAS模型(上方)。红线表示计算出的流量,黄线表示轴向截面的位置(下图)。在轴向截面中,健康受试者(A和B中的左侧)和患有Chiari的患者(A和B中的右侧)的流动方式均不相同。健康志愿者的峰值速度达到2.27 cm / s,Chiari患者的峰值速度达到5.24 cm / s(图像右侧的色标)。在针对特定患者和理想化模型的CFD研究中,显示了 关于CSF流量的重要要点:它在孔口下方的 速度明显大于孔口下方的 速度。 / sup>在健康个体和患有Chiari I的 患者中均具有不均匀的模式,与中线相比,在 中线侧的速度更大,并且流动不均匀性更大 和扁桃体突出时脑脊液的峰值速度。 在理想模型中的研究显​​示了另一个发现:颅骨和头颅中的CSF 同时流动在健康模型和Chiari模型中,收缩期末和舒张末期 上的 方向(同步双向流), 病人的程度更高。该研究表明 同步双向流动正常发生,并且在 患有Chiari I的患者中,其发生程度可检测到 在PC MR上。 理想化的模型适合于评估CSF流 的时间模式中的变化对 CSF流的影响以及模型的弹性特性。可以假定 或可以使用PC MR在患者和对照组中进行测量。 CFD 有助于研究不同的时间流 模式如何影响速度和压力。 组织弹性,运动的影响,以及SAS非刚性模型中CSF流动的可压缩性,增加了组织的弹性,可压缩性。对SAS模型 的运动会引入流动特性,例如刚性模型中未见的压力 波。为避免过多的计算时间,需要对 非刚性模型进行解剖简化。 对于CFD,SAS可以使用同轴流体填充管状 结构进行建模,1,或两者都具有弹性。 20,24–28 在此类具有弹性的模型中,压力波 显然以约4–20 m / s的速度传播。模型中的 5,25 速度取决于内管和外管的横截面 面积的比率。 24, 26 如果将狭窄合并到模型中,则会反射压力波,并放大局部的 压力波动。 25,26 压力峰值的陡度随空间中 的流量和分布而变化。通常,脊髓和硬脑膜在压力下会变形 到一定程度,该程度取决于材料的弹性 属性。因为脊髓比硬脑膜更有弹性,所以变形更大。另外,dura 受脂肪和骨骼的向外移动限制, 而脐带不受其他组织的约束。 29,30 绳索和硬脑膜的 弹性随测量方向 的不同而变化,因此脊髓在 径向上的变形要比在测量方向上大。纵向。图8说明了CSF中 峰值压力时脊髓的变形,假定 帘线中具有各向同性的弹性并具有硬的硬膜表面。脊髓在 峰值压力时刻之前发生变形,并随着弹性 的增加而变形。 查看大图(36K):[在此窗口中] [在新窗口中]图8.由CFD程序计算的CSF流量继发的脊髓变形,其中包括弹性影响方程。为了进行模拟,假设脊髓中具有各向同性的线性弹性。该图显示了在最大收缩压时通过SAS和脊髓的矢状视图。 CSF速度(由模型下方的色标指示)在SAS中达到4–7 cm / s,而在硬脑膜和脊髓附近接近零。由于变形对脊髓截面积的影响,速度也从左(头)向右(硬)变化。当压力波沿绳索通过时,它会引发绳索的尾部运动,从而使头部的头部缩小到脉搏。在绳索变窄的地方,由于SAS体积的增加,CSF速度会降低。在此图中,脊髓变形用箭头表示,箭头表示方向,而彩色表示根据上面的比例的大小。请注意,大部分变形是沿纵向变化的,但较小的径向变形发生在压力波的前部(左图)。 CSF速度和脊髓变形随心动周期的相位而变化。综合整个周期,脊髓变形和脑脊液流量在每个脊髓水平为零。尽管此处未显示,但变形量随模型中的弹性增加而增加。脊髓,硬脑膜,硬膜外腔和扁桃体不仅变形,而且还会移动,从而导致CSF速度和压力变化。在 周期, 31 周期以及减压过程中打开椎管时,患者和健康受试者的小脑扁桃体似乎移动约 毫米。 手术,它们似乎有更大的运动。 9 脊椎 的绳索与扁桃体同步运动。 32 脐带在收缩期CSF流动开始时朝尾方向移动,而在舒张期向[sup]头方向移动得更慢。患有 脊髓空洞症的Chiari I患者的脊髓 绳子运动可能比没有脊髓性脊髓炎的患者更大和更早。 7 短暂性前后位 和脊髓的左右运动。 33,34 这些运动对脑脊液速度和压力的影响 需要进一步研究。最后,Chiari I患者收缩期不同的持续时间可能与 脊髓的运动或心脏 <期间SAS形状的改变有关。 / sup> cycle。 结论结论脉动性CSF流量已通过PC MR和CFD进行了表征。 PC MR可测量CSF流量的时间模式, SAS的尺寸和形状以及在特定位置通过心动周期的CSF 的速度。 CFD通过模拟 SAS的患者特定模型和理想模型中的 CSF流量,提供了比时空分辨率更高的时空描述。可以使用PC MR获得并提供其他 流量参数,例如压力,压力梯度,压力 波和应力。 CFD和PC MR的未来研究将 扩展我们对振荡CSF流量的了解,这取决于 模型和模拟中使用的假设。在本文中, 我们专注于有助于表征CSF 流量的PC MR数据以及具有最佳CSF流量 模式的CFD研究,压力模式,波动和变形。 SAS的解剖 或几何形状以及时间流模式确定整个SAS中的 CSF流量和压力。 CSF 流量的参数(例如压力波)随SAS的elastic 属性而变化很大。这些波 的大小和速度可能有助于解释在Chiari I畸形或特发性 脊髓空洞症。这篇评论为CFD和PC MR的未来 研究提供了一些指导。这表明,在对患者进行评估时,在多个级别进行脑脊液流成像可能比单个切片更有用,以检测异常模式和速度。并选择要进行颅脑减压的患者。

著录项

  • 来源
    《American Journal of Neuroradiology》 |2010年第6期|00000997-00001002|共6页
  • 作者单位

    From the Scientific Computing Department (S.H., K.-A.M., A.E.L., S.L.), Simula Research Laboratory, Lysaker, Norway;

    From the Scientific Computing Department (S.H., K.-A.M., A.E.L., S.L.), Simula Research Laboratory, Lysaker, Norway|Department of Informatics (K.-A.M.), University of Oslo, Oslo, Norway;

    From the Scientific Computing Department (S.H., K.-A.M., A.E.L., S.L.), Simula Research Laboratory, Lysaker, Norway;

    From the Scientific Computing Department (S.H., K.-A.M., A.E.L., S.L.), Simula Research Laboratory, Lysaker, Norway|Faculty of Technology (S.L.), Telemark University College, Porsgrunn, Norway;

    Department of Radiology (V.H.), University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号