首页> 外文期刊>Algorithmica >Sum Coloring Interval and κ-Claw Free Graphs with Application to Scheduling Dependent Jobs
【24h】

Sum Coloring Interval and κ-Claw Free Graphs with Application to Scheduling Dependent Jobs

机译:求和着色间隔和无κ爪图在调度相关作业中的应用

获取原文
获取原文并翻译 | 示例

摘要

We consider the sum coloring and sum multicoloring problems on several fundamental classes of graphs, including the classes of interval and κ-claw free graphs. We give an algorithm that approximates sum coloring within a factor of 1.796, for any graph in which the maximum κ-colorable subgraph problem is polynomially solvable. In particular, this improves on the previous best known ratio of 2 for interval graphs. We introduce a new measure of coloring, robust throughput, that indicates how "quickly" the graph is colored, and show that our algorithm approximates this measure within a factor of 1.4575. In addition, we study the contiguous (or non-preemptive) sum multicoloring problem on κ-claw free graphs. This models, for example, the scheduling of dependent jobs on multiple dedicated machines, where each job requires the exclusive use of at most κ machines. Assuming that κ is a fixed constant, we obtain the first constant factor approximation for the problem.
机译:我们考虑图的几个基本类别上的总和着色和总和多色问题,包括区间图和无κ爪图的类别。对于任何最大κ可着色子图问题可以多项式求解的图,我们给出了一种算法,该算法可在1.796的因子内近似求和着色。特别地,这改进了间隔图的先前的最佳已知比率2。我们引入了一种新的着色度量,即稳定的吞吐量,该度量指示图形被着色的“快速”程度,并表明我们的算法在1.4575的因数内近似了该度量。此外,我们研究了无κ爪图上的连续(或非抢先)总和多色问题。例如,该模型在多个专用计算机上调度相关作业的调度,其中每个作业最多需要排他地使用κ计算机。假设κ是一个固定常数,我们获得该问题的第一个常数因子近似值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号