首页> 外文期刊>Algorithmica >Static Optimality and Dynamic Search-Optimality in Lists and Trees
【24h】

Static Optimality and Dynamic Search-Optimality in Lists and Trees

机译:列表和树中的静态最优和动态搜索最优

获取原文
获取原文并翻译 | 示例

摘要

Adaptive data structures form a central topic of on-line algorithms research. The area of Competitive Analysis began with the results of Sleator and Tarjan showing that splay trees achieve static optimality for search trees, and that Move-to-Front is constant competitive for the list update problem [ST1], [ST2]. In a parallel development, powerful algorithms have been developed in Machine Learning for problems of on-line prediction [LW], [FS]. This paper is inspired by the observation made in [BB] that if computational decision-making costs are not considered, then these "weighted experts" techniques from Machine Learning allow one to achieve a 1 + ε ratio against the best static object in hindsight for a wide range of data structure problems. In this paper we give two results. First, we show that for the case of lists, we can achieve a 1 + ε ratio with respect to the best static list in hindsight, by a simple efficient algorithm. This algorithm can then be combined with existing results to achieve good static and dynamic bounds simultaneously. Second, for trees, we show a (computationally inefficient) algorithm that achieves what we call "dynamic search optimality": dynamic optimality if we allow the on-line algorithm to make free rotations after each request. We hope this to be a step towards solving the longstanding open problem of achieving true dynamic optimality for trees.
机译:自适应数据结构构成了在线算法研究的中心主题。竞争分析的领域始于Sleator和Tarjan的结果,该结果表明,展开树对搜索树达到静态最优,并且“向前移动”对于列表更新问题[ST1],[ST2]一直具有竞争力。在并行开发中,机器学习中已经开发出功能强大的算法来解决在线预测[LW],[FS]问题。本文的灵感来自[BB]的观察,即如果不考虑计算决策成本,那么机器学习中的这些“加权专家”技术就可以使事后观察中的最佳静态对象达到1 +ε的比率。各种各样的数据结构问题。在本文中,我们给出两个结果。首先,我们证明对于列表的情况,通过简单有效的算法,相对于事后看来的最佳静态列表,我们可以实现1 +ε的比率。然后可以将此算法与现有结果结合起来,以同时实现良好的静态和动态边界。其次,对于树木,我们展示了一种(计算上效率低下)的算法,该算法可以实现所谓的“动态搜索最优性”:如果允许在线算法在每次请求后自由旋转,则可以实现动态最优性。我们希望这是解决长期存在的问题的第一步,以实现树木真正的动态最优。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号