首页> 外文期刊>Algorithmica >Improved Approximation Algorithms for Maximum Resource Bin Packing and Lazy Bin Covering Problems
【24h】

Improved Approximation Algorithms for Maximum Resource Bin Packing and Lazy Bin Covering Problems

机译:改进的近似算法,用于最大资源箱打包和惰性箱覆盖问题

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study two variants of the bin packing and covering problems called Maximum Resource Bin Packing (MRBP) and Lazy Bin Covering (LBC) problems, and present new approximation algorithms for them. For the offline MRBP problem, the previous best known approximation ratio is 6/5 (= 1.2) achieved by the classical First-Fit-Increasing (FFI) algorithm (Boyar et al. in Theor. Comput. Sci. 362(1-3):127-139, 2006). In this paper, we give a new FFI-type algorithm with an approximation ratio of 80/71 (≈ 1.12676). For the offline LBC problem, it has been shown in Lin et al. (COCOON, pp. 340-349, 2006) that the classical First-Fit-Decreasing (FFD) algorithm achieves an approximation ratio of 71/66 (≈ 1.18333). In this paper, we present a new FFD-type algorithm with an approximation ratio of 17/15 (≈ 1.13333). Our algorithms are based on a pattern-based technique and a number of other observations. They run in near linear time (i.e., O(n logn)), and therefore are practical.
机译:在本文中,我们研究了装箱和装箱问题的两个变体,称为最大资源装箱(MRBP)和懒人装箱(LBC)问题,并为它们提供了新的近似算法。对于离线MRBP问题,以前的最接近的近似比率是通过经典的首次拟合增加(FFI)算法(Boyar等人在Theor。Comput。Sci。362(1-3)中获得的6/5(= 1.2) ):127-139,2006)。在本文中,我们给出了一种新的FFI类型算法,其近似比率为80/71(≈1.12676)。对于离线LBC问题,已在Lin等人的文章中进行了介绍。 (COCOON,第340-349页,2006年),经典的首次拟合减量(FFD)算法实现的近似比率为71/66(≈1.18333)。在本文中,我们提出了一种新的FFD类型算法,其近似比率为17/15(≈1.13333)。我们的算法基于基于模式的技术和许多其他观察结果。它们以接近线性的时间运行(即O(n logn)),因此很实用。

著录项

  • 来源
    《Algorithmica》 |2010年第2期|232-251|共20页
  • 作者

    Mingen Lin; Yang Yang; Jinhui Xu;

  • 作者单位

    Department of Computer Science and Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;

    Department of Computer Science and Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;

    Department of Computer Science and Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    maximum resource bin packing; lazy bin covering; approximation algorithms; pattern;

    机译:最大资源箱包装;懒桶盖近似算法;图案;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号