首页> 外文期刊>Algorithmica >Minimum Augmentation of Edge-Connectivity between Vertices and Sets of Vertices in Undirected Graphs
【24h】

Minimum Augmentation of Edge-Connectivity between Vertices and Sets of Vertices in Undirected Graphs

机译:无向图中顶点和顶点集之间的边缘连接性的最小增强

获取原文
获取原文并翻译 | 示例

摘要

Given an undirected multigraph G = (V, E), a family W of areas W is contained in V, and a target connectivity k ≥ 1, we consider the problem of augmenting G by the smallest number of new edges so that the resulting graph has at least k edge-disjoint paths between v and W for every pair of a vertex v ∈ V and an area W ∈ W. So far this problem was shown to be NP-complete in the case of k = 1 and polynomially solvable in the case of k = 2. In this paper, we show that the problem for k ≥ 3 can be solved in O(m +n(k~3 + n~2)(p + kn + n log n) log k + pkn~3 log(n/k)) time, where n = |V|, m = |{{u, v}|(u, v) ∈ E}|, and p = |W|.
机译:给定一个无向的多重图G =(V,E),区域W包含一个族W,并且目标连通性k≥1,我们考虑了用最少数量的新边来扩充G的问题,因此生成的图对于每对顶点v∈V和面积W∈W,在v和W之间至少有k条边缘不相交的路径。到目前为止,在k = 1的情况下,该问题被证明是NP完全的,并且在多项式中可求解在k = 2的情况下,本文证明k≥3的问题可以通过O(m + n(k〜3 + n〜2)(p + kn + n log n)log k + pkn〜3 log(n / k))时间,其中n = | V |,m = | {{u,v} |(u,v)∈E} |,而p = | W |。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号