首页> 外文期刊>Algorithmica >Self-Assembling Rulers for Approximating Generalized Sierpinski Carpets
【24h】

Self-Assembling Rulers for Approximating Generalized Sierpinski Carpets

机译:自组装标尺,用于逼近广义谢尔宾斯基地毯

获取原文
获取原文并翻译 | 示例

摘要

Discrete self-similar fractals have been used as test cases for self-assembly, both in the laboratory and in mathematical models, ever since Winfree exhibited a tile assembly system in which the Sierpinski triangle self-assembles. For strict self-assembly, where tiles are not allowed to be placed outside the target structure, it is an open question whether any self-similar fractal can self-assemble. This has motivated the development of techniques to approximate fractals with strict self-assembly. Ideally, such an approximation would produce a structure with the same fractal dimension as the intended fractal, but with specially labeled tiles at positions corresponding to points in the fractal. We show that the Sierpinski carpet, along with an infinite class of related fractals, can approximately self-assemble in this manner. Our construction takes a set of parameters specifying a target fractal and creates a tile assembly system in which the fractal approximately self-assembles. This construction introduces rulers and readers to control the self-assembly of a fractal structure without distorting it. To verify the fractal dimension of the resulting assemblies, we prove a result on the dimension of sets embedded into discrete fractals. We also give a conjecture on the limitations of approximating self-similar fractals.
机译:自从Winfree展示了其中Sierpinski三角形自组装的瓷砖组装系统以来,离散的自相似分形就已经在实验室和数学模型中用作自组装的测试用例。对于严格的自组装,不允许将瓷砖放置在目标结构之外,是否有任何自相似分形可以自组装是一个悬而未决的问题。这激发了通过严格的自组装近似分形的技术的发展。理想地,这种近似将产生具有与预期分形相同的分形维数的结构,但是在与分形中的点相对应的位置处具有专门标记的图块。我们证明了Sierpinski地毯以及无限种类的相关分形可以这种方式近似地自我组装。我们的构造采用一组参数来指定目标分形,并创建一个瓷砖组装系统,在该系统中,分形近似自组装。这种结构引入了标尺和读取器,以控制分形结构的自组装而不会使其变形。为了验证所得装配的分形维数,我们证明了嵌入离散分形中的集合维数的结果。我们还对近似自相似分形的局限性给出了一个猜想。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号