首页> 外文期刊>Algorithmica >A Randomized O (log~2 k) -Competitive Algorithm for Metric Bipartite Matching
【24h】

A Randomized O (log~2 k) -Competitive Algorithm for Metric Bipartite Matching

机译:公制二部匹配的随机O(log〜2 k)竞争算法

获取原文
获取原文并翻译 | 示例

摘要

We consider the online metric matching problem in which we are given a metric space, k of whose points are designated as servers. Over time, up to k requests arrive at an arbitrary subset of points in the metric space, and each request must be matched to a server immediately upon arrival, subject to the constraint that at most one request is matched to any particular server. Matching decisions are irrevocable and the goal is to minimize the sum of distances between the requests and their matched servers. We give an O(log~2k)-competitive randomized algorithm for the online metric matching problem. This improves upon the best known guarantee of O(log~3 k) on the competitive factor due to Meyerson, Nanavati and Poplawski (SODA '06, pp. 954-959, 2006). It is known that for this problem no deterministic algorithm can have a competitive better than 2k - 1, and that no randomized algorithm can have a competitive ratio better than 1n k.
机译:我们考虑在线度量匹配问题,在该问题中,我们获得了一个度量空间,其中k个点的点被指定为服务器。随着时间的流逝,最多有k个请求到达度量空间中任意点的子集,并且每个请求必须在到达后立即与服务器匹配,但要遵守这样的约束:至多一个请求与任何特定服务器都匹配。匹配决定是不可撤销的,目标是最大程度地减少请求与其匹配服务器之间的距离之和。对于在线度量匹配问题,我们给出了O(log〜2k)竞争性随机算法。这是由于梅耶森,纳纳瓦蒂和波普劳斯基在竞争因素上最著名的O(log〜3 k)保证而提高的(SODA '06,第954-959页,2006年)。众所周知,对于这个问题,没有确定性算法的竞争率可以高于2k-1,并且随机化算法的竞争率都不能超过1n k。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号