首页> 外文期刊>Algorithmica >Finding a Shortest Non-zero Path in Group-Labeled Graphs via Permanent Computation
【24h】

Finding a Shortest Non-zero Path in Group-Labeled Graphs via Permanent Computation

机译:通过永久计算在组标签图中找到最短的非零路径

获取原文
获取原文并翻译 | 示例

摘要

A group-labeled graph is a directed graph with each arc labeled by a group element, and the label of a path is defined as the sum of the labels of the traversed arcs. In this paper, we propose a polynomial time randomized algorithm for the problem of finding a shortest s-t path with a non-zero label in a given group-labeled graph (which we call the Shortest Non-Zero Path Problem). This problem generalizes the problem of finding a shortest path with an odd number of edges, which is known to be solvable in polynomial time by using matching algorithms. Our algorithm for the Shortest Non-Zero Path Problem is based on the ideas of Bjorklund and Husfeldt (Proceedings of the 41st international colloquium on automata, languages and programming, part I. LNCS 8572, pp 211-222, 2014). We reduce the problem to the computation of the permanent of a polynomial matrix modulo two. Furthermore, by devising an algorithm for computing the permanent of a polynomial matrix modulo for any fixed integer r, we extend our result to the problem of packing internally-disjoint s-t paths.
机译:带有组标记的图是有向图,每个弧均由组元素标记,并且路径的标签定义为所遍历的弧的标签之和。在本文中,我们提出了一种多项式时间随机算法,用于在给定的带有组标签的图中查找带有非零标签的最短s-t路径的问题(我们称为最短非零路径问题)。该问题普遍存在以下问题:找到具有奇数个边的最短路径,这是已知的通过使用匹配算法可在多项式时间内解决的问题。我们的最短非零路径问题算法基于Bjorklund和Husfeldt的思想(第41届国际自动机,语言和编程国际研讨会论文集,第一部分,LNCS 8572,第211-222页,2014年)。我们将问题简化为模为2的多项式矩阵的永久性的计算。此外,通过设计一种算法来计算任何固定整数r的多项式矩阵模的永久性,我们将结果扩展到打包内部不相交的s-t路径的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号