首页> 外文期刊>Algorithmica >Clique Clustering Yields a PTAS for Max-Coloring Interval Graphs
【24h】

Clique Clustering Yields a PTAS for Max-Coloring Interval Graphs

机译:Clique聚类产生最大色彩间隔图的PTAS

获取原文
获取原文并翻译 | 示例

摘要

We are given an interval graph where each interval has a weight . The goal is to color the intervals with an arbitrary number of color classes such that is minimized. This problem, called max-coloring interval graphs or weighted coloring interval graphs, contains the classical problem of coloring interval graphs as a special case for uniform weights, and it arises in many practical scenarios such as memory management. Pemmaraju, Raman, and Varadarajan showed that max-coloring interval graphs is NP-hard [21] and presented a 2-approximation algorithm. We settle the approximation complexity of this problem by giving a polynomial-time approximation scheme (PTAS), that is, we show that there is an -approximation algorithm for any . The PTAS also works for the bounded case where the sizes of the color classes are bounded by some arbitrary k = n.
机译:我们给出了一个间隔图,其中每个间隔都有一个权重。目标是使用任意数量的颜色类别为间隔着色,以使其最小化。这个问题称为最大着色间隔图或加权着色间隔图,它包含着色间隔图的经典问题,作为统一权重的特殊情况,并且在许多实际情况下(例如内存管理)都会出现。 Pemmaraju,Raman和Varadarajan显示最大着色间隔图是NP难的[21],并提出了一种2近似算法。我们通过给出多项式时间逼近方案(PTAS)来解决此问题的逼近复杂度,也就是说,我们证明了对任何一个都有一个逼近算法。 PTAS还适用于有色情况,其中颜色类的大小由任意k <= n限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号