首页> 外文期刊>Algorithmica >Faster algorithms for counting subgraphs in sparse graphs
【24h】

Faster algorithms for counting subgraphs in sparse graphs

机译:用于计数稀疏图中的子图的更快算法

获取原文
获取原文并翻译 | 示例

摘要

Given a k-node pattern graph H and an n-node host graph G, the subgraph counting problem asks to compute the number of copies of H in G. In this work we address the following question: can we count the copies of H faster if G is sparse? We answer in the affirmative by introducing a novel tree-like decomposition for directed acyclic graphs, inspired by the classic tree decomposition for undirected graphs. This decomposition gives a dynamic program for counting the homomorphisms of H in G by exploiting the degeneracy of G, which allows us to beat the state-of-theart subgraph counting algorithms when G is sparse enough. For example, we can count the induced copies of any k-node pattern H in time 2(O(k2)) O(n(0.25k+2) log n) if G has bounded degeneracy, and in time 2(O(k2))O(n(0.625k+2) log n) if G has bounded average degree. These bounds are instantiations of a more general result, parameterized by the degeneracy of G and the structure of H, which generalizes classic bounds on counting cliques and complete bipartite graphs. We also give lower bounds based on the Exponential Time Hypothesis, showing that our results are actually a characterization of the complexity of subgraph counting in bounded-degeneracy graphs.
机译:给定K节点图案图H和N节点主机图G,子图计数问题要求计算H在G中的H中的份数。在此工作中我们解决了以下问题:我们可以更快地计算H的副本吗?如果g稀疏?我们通过引入针对有向非循环图的新颖的树状分解来回答肯定的,这是由经典树分解对无向图形的。这种分解给出了通过利用G的退化来计算H在G中的均匀的动态程序,这使我们能够在G稀疏时击败逐步的子图计数算法。例如,如果G具有界限退化,并且在时间2(o(如果g具有界定的平均度,则为K2))O(n(0.625k + 2)log n)。这些界限是通过G的退化和H的结构参数化的更一般结果的实例化,其概括了计数群体和完整的双链图上的经典界限。我们还基于指数时间假设给出下限,表明我们的结果实际上是在有界性退化图中计数的子图计数的复杂性的表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号