首页> 外文期刊>Algorithmica >Runtime Performances of Randomized Search Heuristics for the Dynamic Weighted Vertex Cover Problem
【24h】

Runtime Performances of Randomized Search Heuristics for the Dynamic Weighted Vertex Cover Problem

机译:随机搜索启发式动态加权顶点封面问题的运行时性能

获取原文
获取原文并翻译 | 示例

摘要

Randomized search heuristics such as evolutionary algorithms are frequently applied to dynamic combinatorial optimization problems. Within this paper, we present a dynamic model of the classic weighted vertex cover problem and analyze the runtime performances of the well-studied algorithms randomized local search and (1 + 1) EA adapted to it, to contribute to the theoretical understanding of evolutionary computing for problems with dynamic changes. In our investigations, we use an edge-based representation based on the dual form of the Linear Programming formulation for the problem and study the expected runtime that the adapted algorithms require to maintain a 2-approximate solution when the given weighted graph is modified by an edge-editing or weight-editing operation. Considering the weights on the vertices may be exponentially large with respect to the size of the graph, the step size adaption strategy is incorporated, with or without the 1/5-th rule that is employed to control the increasing/decreasing rate of the step size. Our results show that three of the four algorithms presented in the paper can recompute 2-approximate solutions for the studied dynamic changes in polynomial expected runtime, but the (1 + 1) EA with 1/5-th rule requires pseudo-polynomial expected runtime.
机译:随机搜索启发式如进化算法经常应用于动态组合优化问题。在本文中,我们介绍了经典加权顶点封面问题的动态模型,并分析了良好的算法的运行时性能随机化本地搜索和(1 + 1)EA适应它,有助于对进化计算的理论理解有贡献有关动态变化的问题。在我们的调查中,我们使用基于线性编程配方的双重形式的基于边缘的表示,并研究了适应的算法,当给定的加权图被修改时,所需的算法需要维护2近似解边缘编辑或重量编辑操作。考虑到顶点上的重量可以相对于曲线图的大小指数大,阶梯尺寸适应策略结合在一起,有或没有用于控制步骤的增加/降低率的1/5规则尺寸。我们的研究结果表明,本文中呈现的四种算法中有三种可以重新计算研究多项式预期运行时间中的研究动态变化的2近似解,但具有1/5规则的(1 + 1)EA需要伪多项式预期运行时。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号