首页> 外文期刊>Algorithmica >Practical Methods for Shape Fitting and Kinetic Data Structures using Coresets
【24h】

Practical Methods for Shape Fitting and Kinetic Data Structures using Coresets

机译:使用核心集进行形状拟合和动力学数据结构的实用方法

获取原文
获取原文并翻译 | 示例

摘要

The notion of ε-kernel was introduced by Agarwal et al. (J. ACM 51:606–635, 2004) to set up a unified framework for computing various extent measures of a point set P approximately. Roughly speaking, a subset Q⊆P is an ε-kernel of P if for every slab W containing Q, the expanded slab (1+ε)W contains P. They illustrated the significance of ε-kernel by showing that it yields approximation algorithms for a wide range of geometric optimization problems. We present a simpler and more practical algorithm for computing the ε-kernel of a set P of points in ℝ d . We demonstrate the practicality of our algorithm by showing its empirical performance on various inputs. We then describe an incremental algorithm for fitting various shapes and use the ideas of our algorithm for computing ε-kernels to analyze the performance of this algorithm. We illustrate the versatility and practicality of this technique by implementing approximation algorithms for minimum enclosing cylinder, minimum-volume bounding box, and minimum-width annulus. Finally, we show that ε-kernels can be effectively used to expedite the algorithms for maintaining extents of moving points.
机译:ε内核的概念是由Agarwal等人介绍的。 (J. ACM 51:606-635,2004)建立一个统一的框架,用于近似计算点集P的各种程度度量。粗略地讲,如果对于每个包含Q的平板W,扩展后的平板(1 +ε)W都包含P,则子集Q⊆P是P的ε核。他们通过证明产生近似算法来说明ε核的重要性。解决各种几何优化问题。我们提出了一种更简单实用的算法,用于计算ℝ d 中的一组P点的ε核。通过显示各种输入的经验性能,我们证明了该算法的实用性。然后,我们描述一种适合各种形状的增量算法,并使用我们的算法思想来计算ε核,以分析该算法的性能。我们通过实现最小封闭圆柱体,最小体积边界框和最小宽度环的近似算法来说明该技术的多功能性和实用性。最后,我们证明了ε核可以有效地用于加速算法来维持运动点的范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号