首页> 外文期刊>Algorithmica >Quantum Property Testing of Group Solvability
【24h】

Quantum Property Testing of Group Solvability

机译:群可解性的量子性质测试

获取原文
获取原文并翻译 | 示例

摘要

Testing efficiently whether a finite set Γ with a binary operation ⋅ over it, given as an oracle, is a group is a well-known open problem in the field of property testing. Recently, Friedl, Ivanyos and Santha have made a significant step in the direction of solving this problem by showing that it is possible to test efficiently whether the input (Γ,⋅) is an abelian group or is far, with respect to some distance, from any abelian group. In this paper, we make a step further and construct an efficient quantum algorithm that tests whether (Γ,⋅) is a solvable group, or is far from any solvable group. More precisely, the number of queries used by our algorithm is polylogarithmic in the size of the set Γ.
机译:有效地测试以二进制表示的有限集合Γ是否以组为单位是预言,这是属性测试领域中一个众所周知的开放问题。最近,Friedl,Ivanyos和Santha朝着解决这个问题的方向迈出了重要一步,表明可以有效地测试输入(Γ,⋅)是阿贝尔群还是相对于某个距离而言是远的,来自任何阿贝尔族。在本文中,我们进一步迈出了一步,构建了一种有效的量子算法,用于测试(Γ,⋅)是可解基团还是远离任何可解基团。更准确地说,我们的算法使用的查询数量在集合Γ的大小上是多对数的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号