首页> 外文期刊>Algorithmica >An Improved Algorithm for Computing All the Best Swap Edges of a Tree Spanner
【24h】

An Improved Algorithm for Computing All the Best Swap Edges of a Tree Spanner

机译:一种计算树形扳手所有最佳交换边缘的改进算法

获取原文
获取原文并翻译 | 示例

摘要

A tree sigma-spanner of a positively real-weighted n-vertex and m-edge undirected graph G is a spanning tree T of G which approximately preserves (i.e., up to a multiplicative stretch factor sigma) distances in G. Tree spanners with provably good stretch factors find applications in communication networks, distributed systems, and network design. However, finding an optimal or even a good tree spanner is a very hard computational task. Thus, if one has to face a transient edge failure in T, the overall effort that has to be afforded to rebuild a new tree spanner (i.e., computational costs, set-up of new links, updating of the routing tables, etc.) can be rather prohibitive. To circumvent this drawback, an effective alternative is that of associating with each tree edge a best possible (in terms of resulting stretch) swap edge-a well-established approach in the literature for several other tree topologies. Correspondingly, the problem of computing all the best swap edges of a tree spanner is a challenging algorithmic problem, since solving it efficiently means to exploit the structure of shortest paths not only in G, but also in all the scenarios in which an edge of T has failed. For this problem we provide a very efficient solution, running in O(n2log4n) time, which drastically improves (almost by a quadratic factor in n in dense graphs) on the previous known best result.
机译:正实加权n顶点和m边无向图G的树sigma-spanner是G的生成树T,它大约保留G中的距离(即,直到倍数拉伸因子sigma)。良好的拉伸因子可在通信网络,分布式系统和网络设计中找到应用。但是,找到一个最佳的,甚至是一个好的树形扳手是一项非常艰巨的计算任务。因此,如果必须面对T中的瞬时边缘故障,则必须付出全部努力来重建新的树形扳手(即,计算成本,新链路的建立,路由表的更新等)。可能会让人望而却步。为了避免此缺点,一种有效的替代方法是将每个树边缘与一个最佳可能的交换边缘(就生成的拉伸而言)相关联,这是文献中针对其他几种树形拓扑结构的成熟方法。相应地,计算树形扳手的所有最佳交换边的问题是一个具有挑战性的算法问题,因为有效地解决它意味着不仅要利用G中的最短路径结构,还要利用T边的所有场景中的最短路径的结构。失败了。对于这个问题,我们提供了一个非常有效的解决方案,可以在O(n2log4n)时间内运行,并且可以大大改善(几乎在密集图中,n中的二次因子),达到了先前已知的最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号