首页> 外文期刊>Algorithmica >Approximation Algorithms for Highly Connected Multi-dominating Sets in Unit Disk Graphs
【24h】

Approximation Algorithms for Highly Connected Multi-dominating Sets in Unit Disk Graphs

机译:单位圆图中的高连通多支配集的逼近算法

获取原文
获取原文并翻译 | 示例

摘要

Given an undirected graph on a node set V and positive integers k and m, a k-connected m-dominating set ((k, m)-CDS) is defined as a subset S of V such that each node in has at least m neighbors in S, and a k-connected subgraph is induced by S. The weighted (k, m)-CDS problem is to find a minimum weight (k, m)-CDS in a given node-weighted graph. The problem is called the unweighted (k, m)-CDS problem if the objective is to minimize the cardinality of a (k, m)-CDS. These problems have been actively studied for unit disk graphs, motivated by the application of constructing a virtual backbone in a wireless ad hoc network. In this paper, we consider the case in which , and we present a simple -approximation algorithm for the unweighted (k, m)-CDS problem, and a primal-dual -approximation algorithm for the weighted (k, m)-CDS problem.
机译:给定节点集V上的无向图以及正整数k和m,将k个连接的m占优集合((k,m)-CDS)定义为V的子集S,使得in中的每个节点至少具有m相邻的S,并且由S诱导出k个连通子图。加权(k,m)-CDS问题是在给定的节点加权图中找到最小权重(k,m)-CDS。如果目标是最小化(k,m)-CDS的基数,则该问题称为未加权(k,m)-CDS问题。由于在无线自组织网络中构建虚拟主干的应用,这些问题已针对单位磁盘图进行了积极研究。在本文中,我们考虑的情况,针对非加权(k,m)-CDS问题,我们提出了一种简单的近似算法,而对于加权(k,m)-CDS问题,我们提出了一种原始对偶算法。

著录项

  • 来源
    《Algorithmica》 |2018年第11期|3270-3292|共23页
  • 作者

    Fukunaga Takuro;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号