首页> 外文期刊>Algorithmica >Parameterized Complexity of Length-bounded Cuts and Multicuts
【24h】

Parameterized Complexity of Length-bounded Cuts and Multicuts

机译:定长切割和多切割的参数化复杂度

获取原文
获取原文并翻译 | 示例

摘要

We study the Minimum Length-Bounded Cut problem where the task is to find a set of edges of a graph such that after removal of this set, the shortest path between two prescribed vertices is at least L + 1 long. We show the problem can be computed in FPT time with respect to L and the tree-width of the input graph G as parameters and with linear dependence of vertical bar V(G)vertical bar (i.e., in time f (L, tw(G))vertical bar V(G)vertical bar for a computable function f). We derive an FPT algorithm for a more general multi-commodity length-bounded cut problem when additionally parameterized by the number of terminals. For the former problem we show a W[1]-hardness result when the parameterization is done by the path-width only (instead of the tree-width) and that this problem does not admit polynomial kernel when parameterized by path-width and L. We also derive an FPT algorithm for the Minimum LENGTH-BOUNDED Cut problem when parameterized by the tree-depth, thus showing an interesting behavior for this problem and parameters tree-depth and path-width.
机译:我们研究最小定界切割问题,该任务的任务是找到图形的一组边,以便在除去该组边之后,两个指定顶点之间的最短路径至少为L + 1长。我们展示了可以在FPT时间内相对于L和以输入图G的树宽为参数以及垂直线V(G)垂直线(即在时间f(L,tw( G))垂直线V(G)可计算函数f)的垂直线。当通过终端数量额外参数化时,我们推导了针对更一般的多商品定界切割问题的FPT算法。对于前一个问题,当仅通过路径宽度(而不是树宽度)完成参数化时,我们显示出W [1]硬度结果,并且当通过路径宽度和L参数化时,此问题不容许多项式核当通过树深度进行参数化时,我们还推导了用于最小长度绑定切割问题的FPT算法,从而显示了该问题以及参数树深度和路径宽度的有趣行为。

著录项

  • 来源
    《Algorithmica》 |2018年第12期|3597-3617|共21页
  • 作者

    Dvorak Pavel; Knop Dusan;

  • 作者单位
  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号