首页> 外文期刊>IIE Transactions >Quantile contours and multivanate density estimation for massive datasets via sequential convex hull peeling
【24h】

Quantile contours and multivanate density estimation for massive datasets via sequential convex hull peeling

机译:通过顺序凸包剥离实现大规模数据集的分位数轮廓和多变量密度估计

获取原文
获取原文并翻译 | 示例

摘要

We propose a low-storage, single-pass, sequential method for the execution of convex hull peeling for massive datasets. The method is shown to vastly reduce the computation time required for the existing convex hull peeling algorithm from O(n~2) to O(n). Furthermore, the proposed method has significantly smaller storage requirements compared to the existing method. We present algorithms for low-storage, sequential computation of both the convex hull peeling multivariate median and the convex hull peeling pth depth contour, where 0 < p < 1. We demonstrate the accuracy and reduced computation time required of the proposed method by comparing to the existing convex hull peeling method through simulation studies.
机译:我们提出了一种低存储量,单遍,顺序的方法来执行海量数据集的凸包剥离。结果表明,该方法将现有的凸壳去皮算法所需的计算时间从O(n〜2)大大减少到O(n)。此外,与现有方法相比,所提出的方法具有显着较小的存储需求。我们提出了用于凸壳剥皮多元中值和凸壳剥皮pth深度轮廓的低存储顺序计算的算法,其中0 <1。通过与相比,我们证明了该方法的准确性和所需的计算时间减少通过仿真研究现有的凸壳脱皮方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号