首页> 外文期刊>AIAA Journal >Finite Rate Chemistry Large-Eddy Simulation of Self-Ignition in a Supersonic Combustion Ramjet
【24h】

Finite Rate Chemistry Large-Eddy Simulation of Self-Ignition in a Supersonic Combustion Ramjet

机译:超声速燃烧冲压发动机中自燃的有限速率化学大涡模拟

获取原文
获取原文并翻译 | 示例
           

摘要

In this study, large-eddy simulation is used to analyze supersonic flow, mixing, and combustion in a supersonic combustor equipped with a two-stage fuel injector strut. The present study focuses on mixing, ignition, and flame stabilization and the degree of detail required by the reaction mechanism in the large-eddy simulation model framework. An explicit large-eddy simulation model, using a mixed subgrid model and a partially stirred reactor turbulence-chemistry interaction model, is used in an unstructured finite volume setting. The model, and its components, has been carefully validated in a large number of other studies. To bestow further validation and to provide supplementary information about the physics of mixing and supersonic combustion, experimental data from the National Aerospace Laboratory of Japan's supersonic combustor, equipped with the two-stage strut injector and connected to ONERA's vitiation air heater, are employed. The large-eddy simulation predictions are compared with the experimental centerline wall pressure distribution and the planar laser-induced fluorescence imaging of hydroxide-ion radicals distributions in several cross sections of the combustor, showing excellent qualitative and quantitative agreements. The large-eddy simulation results are furthermore used to elucidate the complicated flow, mixing, and combustion physics imposed by the multi-injector two-stage injector strut. The importance of the combustion chemistry appears weaker than expected but with the one-step mechanism resulting in a too early ignition (caused by local shock wave heating) and a more stable flame, as compared with the more detailed two- and seven-step mechanisms.
机译:在这项研究中,大涡模拟用于分析配备两级喷油器支柱的超音速燃烧室中的超音速流动,混合和燃烧。本研究的重点是混合,点火和火焰稳定化以及大涡模拟模型框架中反应机理所需的详细程度。在非结构化有限体积设置中使用显式大涡模拟模型,该模型使用混合子网格模型和部分搅拌的反应器湍流-化学相互作用模型。该模型及其组件已在许多其他研究中得到了仔细验证。为了进一步验证和提供有关混合和超音速燃烧的物理信息,我们使用了日本超音速燃烧器国家航空实验室的实验数据,该实验室配备了两级支柱式喷油器,并连接到ONERA的真空空气加热器。大涡模拟的预测结果与实验中心线壁压力分布以及燃烧器几个横截面中氢氧根自由基分布的平面激光诱导荧光成像进行了比较,显示出优异的定性和定量一致性。大涡模拟结果还用于阐明多喷射器两级喷射器支杆带来的复杂的流动,混合和燃烧物理学。与更详细的两步法和七步法相比,燃烧化学的重要性似乎弱于预期,但单步法导致过早点火(由局部冲击波加热引起)和更稳定的火焰。 。

著录项

  • 来源
    《AIAA Journal》 |2010年第3期|540-550|共11页
  • 作者单位

    Swedish Defense Research Agency, SE-147 25 Stockholm, Sweden;

    Swedish Defense Research Agency, SE-147 25 Stockholm, Sweden;

    Swedish Defense Research Agency, SE-147 25 Stockholm, Sweden;

    Swedish Defense Research Agency, SE-147 25 Stockholm, Sweden;

    ONERA, 91761 Palaiseau Cedex, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号