首页> 外文期刊>AIAA Journal >Variable Turbulent Prandtl Number Model for Shock/Boundary-Layer Interaction
【24h】

Variable Turbulent Prandtl Number Model for Shock/Boundary-Layer Interaction

机译:激波/边界层相互作用的可变湍流普朗特数模型

获取原文
获取原文并翻译 | 示例
           

摘要

Interaction of shock waves with turbulent boundary layers can enhance the surface heat flux dramatically. Reynolds-averaged Navier-Stokes simulations based on a constant turbulent Prandtl number often give grossly erroneous heat transfer predictions in shock/boundary-layer interaction flows. This is due to the fact that the underlying Morkovin's hypothesis breaks down in the presence of shock waves; thus, the turbulent Prandtl number cannot be assumed to be a constant. In this paper, a new variable turbulent Prandtl number model based on linearized Rankine-Hugoniot conditions applied to shock-turbulence interaction is developed. The turbulent Prandtl number is a function of the shock strength, and a shock function is proposed to identify the location and strength of shock waves. The shock function also simulates the postshock relaxation of the turbulent heat flux, which is akin to that observed in canonical shock-turbulence interaction. The model is combined with the well-validated shock-unsteadiness k - omega model and is applied to the complex shock topology observed in oblique shock/turbulent boundary-layer interactions. Comparison with experimental data shows significant improvement in the surface heat transfer rate in the interaction region, both for attached and separated shock/boundary-layer interaction cases. The shock function is also used to propose a robust form of the existing shock-unsteadiness k - omega model that simplifies the numerical implementation enormously.
机译:冲击波与湍流边界层的相互作用可以显着提高表面热通量。基于恒定湍流Prandtl数的雷诺平均Navier-Stokes模拟通常会在冲击/边界层相互作用流中给出严重错误的传热预测。这是由于以下事实:存在冲击波的情况下,潜在的Morkovin假设就被打破了。因此,湍流的普朗特数不能假定为常数。本文提出了一种基于线性兰金-Hugoniot条件的可变湍流普朗特数模型,将其应用于冲击-湍流相互作用。湍流的普朗特数是冲击强度的函数,提出了一种冲击函数来识别冲击波的位置和强度。冲击功能还模拟了湍流热通量在震后的松弛,类似于在规范的冲击-湍流相互作用中观察到的。该模型与经过充分验证的激波不稳定k-ω模型相结合,并应用于在斜激波/湍流边界层相互作用中观察到的复杂激波拓扑。与实验数据的比较表明,对于附着的和分离的冲击/边界层相互作用情况,相互作用区域中的表面传热速率都有了显着改善。冲击函数还用于提出现有冲击不稳定k-ω模型的鲁棒形式,极大地简化了数值实现。

著录项

  • 来源
    《AIAA Journal》 |2018年第1期|342-355|共14页
  • 作者单位

    Indian Inst Technol, Dept Aerosp Engn, Bombay 400076, Maharashtra, India;

    Indian Inst Technol, Dept Aerosp Engn, Bombay 400076, Maharashtra, India;

    Indian Inst Technol, Dept Aerosp Engn, Bombay 400076, Maharashtra, India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号