首页> 外文会议>AIAA fluid dynamics conference;AIAA aviation forum >Variable turbulent Prandtl number model applied to hypersonic shock/boundary-layer interactions
【24h】

Variable turbulent Prandtl number model applied to hypersonic shock/boundary-layer interactions

机译:可变湍流普朗特数模型应用于高超音速冲击/边界层相互作用

获取原文

摘要

Interaction of shock waves with turbulent boundary-layers can enhance the surface heat flux dramatically. Reynolds-averaged Navier-Stokes simulations based on constant turbulent Prandtl number often give grossly erroneous heat transfer predictions in SBLI flows. This is due to the fact that the underlying Morkovin's hypothesis breaks down in the presence of shock waves; thus, the turbulent Prandtl number can not be assumed to be a constant. In our recent work (Roy, Pathak and Sinha,AIAA 2017), we developed a new variable turbulent Prandtl number model based on linearized Rankine-Hugoniot conditions applied to shock-turbulence interaction. The turbulent Prandtl number is a function of the shock strength and we proposed a shock function to identify the location and strength of shock waves. The shock function also simulates the post-shock ralaxation of the turbulent heat flux, akin to that observed in canonical shock-turbulence interaction. In this work, we extend the variable turbulent Prandtl number model for hypersonic flows by considering the influence of upstream total temperature fluctuation on turbulent heat flux. The model is combined with the well-validated shock-unsteadiness k-ω model and is used to study eight test cases involving shock/boundary-layer interactions at Mach numbers ranging from 5 to 11. Comparison with experimental data shows significant improvement in the surface heat transfer rate in the interaction region. The shock function is also used to propose a robust form of the existing shock-unsteadiness k-ω model that simplifies the numerical implementation enormously.
机译:冲击波与湍流边界层的相互作用可以显着提高表面热通量。基于恒定湍流Prandtl数的雷诺平均Navier-Stokes模拟通常会在SBLI流动中给出严重错误的传热预测。这是由于存在冲击波的情况下,潜在的莫尔科文假设被破坏了。因此,不能假定湍流的普朗特数为常数。在我们最近的工作中(Roy,Pathak和Sinha,AIAA 2017),我们基于线性兰金-休格尼奥特条件开发了一种新的可变湍流Prandtl数模型,该条件适用于冲击-湍流相互作用。湍流的普朗特数是冲击强度的函数,我们提出了一种冲击函数来识别冲击波的位置和强度。冲击功能还模拟了湍流热通量在冲击后的松弛,类似于在规范的冲击-湍流相互作用中观察到的那样。在这项工作中,我们通过考虑上游总温度波动对湍流热通量的影响,扩展了高超声速流动的可变湍流普朗特数模型。该模型与经过充分验证的激波不稳定k-ω模型相结合,用于研究8个马赫数为5到11的激波/边界层相互作用的测试案例。与实验数据的比较表明,表面的显着改善相互作用区域的传热速率。冲击函数还用于提出现有冲击不稳定k-ω模型的鲁棒形式,从而极大地简化了数值实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号