首页> 外文期刊>Aerospace science and technology >Effective optimization on Bump inlet using meta-model multi-objective particle swarm assisted by expected hyper-volume improvement
【24h】

Effective optimization on Bump inlet using meta-model multi-objective particle swarm assisted by expected hyper-volume improvement

机译:使用预期的超大体积改进,借助元模型多目标粒子群对凹凸进气进行有效优化

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents an efficient multi-objective optimization method, focusing on aerodynamic optimization of a diverterless supersonic inlet (DSI) in transonic and supersonic flight conditions. The DSI inlet, through scrutinizing the Bump shape has potential to attain greater aerodynamic performance on exit plane of inlet. However, the high cost of computational fluid dynamic (CFD) simulations raises a significant challenge in the DSI optimization process. In order to obtain solution set in few numbers of objective function calls, a meta-model multi-objective particle swarm optimization (MOPSO) method is proposed based on a self-adaptive Kriging surrogate model, and applied to solve this kind of costly black-box optimization problem. The Kriging model is updated by using a dynamic expected hyper-volume improvement (EHVI) sample metric, which is developed by analyzing disadvantages of the original sample criterion. With the help of the dynamic sample metric, simulation results show that the surrogate-based MOPSO algorithm can obtain plenty enough non-dominated solutions and achieve high precision in the approximation of the Pareto front. In terms of DSI inlet optimization, the bump shape is parameterized by free form deformation (FFD) method, and the total pressure distortions of inlet exit plane are treated as two minimization objectives under transonic and supersonic flight conditions. A well distributed non-dominated solution set is generated by the proposed algorithm within the context of a small call number of cost evaluations, and optimized inlet configurated by the selected solution has better aerodynamic characteristics compared with the initial inlet. (C) 2019 Elsevier Masson SAS. All rights reserved.
机译:本文提出了一种有效的多目标优化方法,重点是跨音速和超音速飞行条件下的无分流超音速进气口(DSI)的空气动力学优化。通过仔细检查凹凸形状,DSI进气口有可能在进气口的出口平面上获得更大的空气动力学性能。但是,计算流体动力学(CFD)仿真的高昂成本在DSI优化过程中提出了重大挑战。为了获得少量目标函数调用的解集,提出了一种基于自适应Kriging替代模型的元模型多目标粒子群优化(MOPSO)方法,并将其应用于解决这种代价高昂的黑盒子优化问题。通过使用动态预期超量改进(EHVI)样本度量来更新Kriging模型,该度量是通过分析原始样本准则的缺点而开发的。借助动态样本度量,仿真结果表明,基于代理的MOPSO算法可以获取足够多的非支配解,并在帕累托前沿的逼近中实现高精度。在DSI进气道优化方面,通过自由形式变形(FFD)方法对凸点形状进行参数化,并且在跨音速和超音速飞行条件下,将进气口出口平面的总压力变形视为两个最小化目标。所提出的算法在成本评估次数较少的情况下生成了分布良好的非支配解决方案集,并且与初始进气道相比,由所选解决方案配置的优化进气道具有更好的空气动力学特性。 (C)2019 Elsevier Masson SAS。版权所有。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号