首页> 外文期刊>Advances in Water Resources >Geostatistical radar-raingauge merging: A novel method for the quantification of rain estimation accuracy
【24h】

Geostatistical radar-raingauge merging: A novel method for the quantification of rain estimation accuracy

机译:地统计雷达-雨量计合并:量化降雨估算精度的新方法

获取原文
获取原文并翻译 | 示例

摘要

Compared to other estimation techniques, one advantage of geostatistical techniques is that they provide an index of the estimation accuracy of the variable of interest with the kriging estimation standard deviation (ESD). In the context of radar-raingauge quantitative precipitation estimation (QPE), we address in this article the question of how the kriging ESD can be transformed into a local spread of error by using the dependency of radar errors to the rain amount analyzed in previous work. The proposed approach is implemented for the most significant rain events observed in 2008 in the Cevennes-Vivarais region, France, by considering both the kriging with external drift (KED) and the ordinary kriging (OK) methods. A two-step procedure is implemented for estimating the rain estimation accuracy: (ⅰ) first kriging normalized ESDs are computed by using normalized variograms (sill equal to 1) to account for the observation system configuration and the spatial structure of the variable of interest (rainfall amount, residuals to the drift); (ⅱ) based on the assumption of a linear relationship between the standard deviation and the mean of the variable of interest, a denormalization of the kriging ESDs is performed globally for a given rain event by using a cross-validation procedure. Despite the fact that the KED normalized ESDs are usually greater than the OK ones (due to an additional constraint in the kriging system and a weaker spatial structure of the residuals to the drift), the KED denormalized ESDs are generally smaller the OK ones, a result consistent with the better performance observed for the KED technique. The evolution of the mean and the standard deviation of the rainfall-scaled ESDs over a range of spatial (5-300 km~2) and temporal (1-6 h) scales demonstrates that there is clear added value of the radar with respect to the raingauge network for the shortest scales, which are those of interest for flash-flood prediction in the considered region.
机译:与其他估算技术相比,地统计学技术的一个优势在于,它们提供了具有克里金法估算标准偏差(ESD)的目标变量的估算精度指标。在雷达雨量定量降水估计(QPE)的背景下,我们在本文中解决以下问题:如何利用雷达误差对先前工作中分析的雨量的依赖性,将克里格ESD转化为误差的局部传播。通过考虑外部漂移克里金法(KED)和普通克里金法(OK),针对法国2008年在塞维纳斯-瓦瓦拉伊斯地区观察到的最重要的降雨事件,采用了建议的方法。实施两步过程来估计降雨估计的准确性:(ⅰ)首先使用归一化的变异函数(等于1)计算归一化的克里金法ESD,以考虑观测系统的配置和关注变量的空间结构(降雨量,漂移的残差); (ⅱ)基于标准偏差和关注变量的平均值之间的线性关系的假设,对于给定的降雨事件,将使用交叉验证程序对kriging ESD的反归一化全局执行。尽管事实上KED归一化ESD通常大于OK归一化ESD(由于克里金系统的额外限制以及漂移残差的空间结构较弱),但KED归一化ESD总体上比OK归一化ESD小。结果与KED技术观察到的更好性能一致。在空间(5-300 km〜2)和时间(1-6 h)范围内,降雨尺度ESD的平均值和标准偏差的演变表明,雷达具有明显的附加值最短尺度的雨量计网络,这是所考虑区域中的洪水预报所关心的那些。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号