首页> 外文期刊>Advances in Computational Mathematics >A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow
【24h】

A fast finite difference method for biharmonic equations on irregular domains and its application to an incompressible Stokes flow

机译:不规则域双调和方程的快速有限差分法及其在不可压缩斯托克斯流中的应用

获取原文
获取原文并翻译 | 示例

摘要

Biharmonic equations have many applications, especially in fluid and solid mechanics, but is difficult to solve due to the fourth order derivatives in the differential equation. In this paper a fast second order accurate algorithm based on a finite difference discretization and a Cartesian grid is developed for two dimensional biharmonic equations on irregular domains with essential boundary conditions. The irregular domain is embedded into a rectangular region and the biharmonic equation is decoupled to two Poisson equations. An auxiliary unknown quantity Δu along the boundary is introduced so that fast Poisson solvers on irregular domains can be used. Non-trivial numerical examples show the efficiency of the proposed method. The number of iterations of the method is independent of the mesh size. Another key to the method is a new interpolation scheme to evaluate the residual of the Schur complement system. The new biharmonic solver has been applied to solve the incompressible Stokes flow on an irregular domain.
机译:双谐方程具有许多应用,尤其是在流体和固体力学中,但是由于微分方程中的四阶导数而难以求解。本文针对具有固有边界条件的不规则域上的二维双调和方程,开发了一种基于有限差分离散化和笛卡尔网格的快速二阶精确算法。不规则域嵌入到矩形区域中,并且双调和方程解耦为两个泊松方程。引入沿边界的辅助未知量Δu,以便可以使用不规则域上的快速泊松求解器。非平凡的数值示例表明了该方法的有效性。该方法的迭代次数与网格大小无关。该方法的另一个关键是采用新的插值方案来评估Schur补码系统的残差。新的双谐波求解器已应用于解决不规则域上不可压缩的斯托克斯流。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号