首页> 外文期刊>Advanced Optical Materials >Near-Infrared-Emitting Five-Monolayer Thick Copper-Doped CdSe Nanoplatelets
【24h】

Near-Infrared-Emitting Five-Monolayer Thick Copper-Doped CdSe Nanoplatelets

机译:近红外发射五层厚掺杂铜的CdSe纳米片

获取原文
获取原文并翻译 | 示例
           

摘要

Doped nanocrystals are instrumental to the high-performance luminescent solar concentrators (LSCs) and the color conversion devices. Recently, copper (Cu)-doped three and four monolayer (ML) thick CdSe nanoplatelets (NPLs) have been shown superior to the existing Cu-doped quantum dots (QDs) for their use in LSCs. However, additional improvement in the LSC performance can be achieved by further redshifting the emission into the near-infrared (NIR) region of electromagnetic spectrum and increasing the absorbed portion of the solar irradiation. Cu-doping into higher thicknesses of these atomically flat NPLs (e.g., >= 5 ML) can achieve these overarching goals. However, addition of the dopant ions during the nucleation stage disturbs this high-temperature growth process and leads to multiple populations of NPLs and QDs. Here, by carefully controlling the precursor chemistry the successful doping of Cu in five ML thick NPLs by high-temperature nucleation doping method is demonstrated. The optimized synthesis method shows nearly pure population of doped five ML thick NPLs, which possess approximate to 150 nm Stokes-shifted NIR emission with high quantum yield of 65 +/- 2%. Structural, elemental, and optical studies are conducted to confirm the successful doping and understand the detailed photophysics. Finally, these materials are tested experimentally and theoretically for their performance as promising LSC materials.
机译:掺杂的纳米晶体对高性能发光太阳能集中器(LSC)和颜色转换设备至关重要。近来,已显示铜(Cu)掺杂的三层和四层单层(ML)厚的CdSe纳米片(NPL)在LSC中的使用优于现有的Cu掺杂量子点(QD)。但是,可以通过将发射进一步红移到电磁光谱的近红外(NIR)区域并增加太阳辐射的吸收部分来实现LSC性能的其他改进。将铜掺杂到这些原子平坦的NPL更高的厚度中(例如> = 5 ML)可以实现这些总体目标。但是,在成核阶段添加掺杂剂离子会扰乱该高温生长过程,并导致NPL和QD的数量增加。在这里,通过仔细地控制前驱物的化学性质,证明了通过高温成核掺杂方法成功地在5 M​​L厚NPL中掺杂了Cu。优化的合成方法显示出几乎纯净的掺杂的5 ML厚NPL种群,它们具有约150 nm的斯托克斯位移NIR发射,具有65 +/- 2%的高量子产率。进行结构,元素和光学研究以确认成功掺杂并了解详细的光物理性质。最后,对这些材料作为有前景的LSC材料进行了实验和理论测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号