首页> 外文期刊>Advanced Materials >Biocompatible Magnetic Micro- and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection
【24h】

Biocompatible Magnetic Micro- and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection

机译:生物相容性磁性微型和纳米型:纳入纳米骨蛋白和细胞转染的制造

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The application of nanoparticles for drug or gene delivery promises benefits in the form of single-cell-specific therapeutic and diagnostic capabilities. Many methods of cell transfection rely on unspecific means to increase the transport of genetic material into cells. Targeted transport is in principle possible with magnetically propelled micromotors, which allow responsive nanoscale actuation and delivery. However, many commonly used magnetic materials (e.g., Ni and Co) are not biocompatible, possess weak magnetic remanence (Fe3O4), or cannot be implemented in nanofabrication schemes (NdFeB). Here, it is demonstrated that co-depositing iron (Fe) and platinum (Pt) followed by one single annealing step, without the need for solution processing, yields ferromagnetic FePt nanomotors that are noncytotoxic, biocompatible, and possess a remanence and magnetization that rival those of permanent NdFeB micromagnets. Active cell targeting and magnetic transfection of lung carcinoma cells are demonstrated using gradient-free rotating millitesla fields to drive the FePt nanopropellers. The carcinoma cells express enhanced green fluorescent protein after internalization and cell viability is unaffected by the presence of the FePt nanopropellers. The results establish FePt, prepared in the L1(0) phase, as a promising magnetic material for biomedical applications with superior magnetic performance, especially for micro- and nanodevices.
机译:纳米颗粒用于药物或基因递送的施用应以单细胞特异性治疗和诊断能力的形式产生益处。许多细胞转染方法依赖于非特异性手段来增加遗传物质的运输到细胞中。有针对性的运输原则上可以通过磁力推进的微量运动器,其允许响应纳米级致动和输送。然而,许多常用的磁性材料(例如,Ni和Co)不是生物相容性的,具有弱磁遗弃(Fe3O4),或者不能以纳米制备方案(NDFEB)实施。在此,证明共存铁(Fe)和铂(Pt),然后进行单一退火步骤,而无需溶液处理,产生是非毒性,生物相容性的铁磁性纳米热量,并且具有竞争对手的遗弃和磁化。那些永久性NdFeb的微观镜片。使用无梯度旋转毫卡场来证明肺癌细胞的活性细胞靶向和磁性转染,以驱动纳米孔。在内部化和细胞活力未受扫描纳米嵌体的存在下不受影响后,癌细胞表达增强的绿色荧光蛋白。结果建立了在L1(0)相中制备的备率,作为具有卓越磁性性能的生物医学应用的有希望的磁性材料,特别是对于微型和纳米型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号