首页> 外文期刊>Advanced Materials >Back Gated Multilayer InSe Transistors with Enhanced Carrier Mobilities via the Suppression of Carrier Scattering from a Dielectric Interface
【24h】

Back Gated Multilayer InSe Transistors with Enhanced Carrier Mobilities via the Suppression of Carrier Scattering from a Dielectric Interface

机译:通过抑制介电层中的载流子散射,增强了载流子迁移率的背栅多层InSe晶体管

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Graphene-like two-dimensional (2D) layered semiconductors hold great promise for next generation nanoelectronics devices after the silicon era. These 2D layered semiconductors exhibit structural characteristics of unique dimensionality, ultrathin thickness and atomic flatness, which are attractive for miniaturization and high performance of electronic devices. 2D structure offers compatibility to silicon based COMS processing, such as photolithography for large-scale fabrication. Ultrathin thickness allows better electrostatic control of electrical conductivity, and significant device downscaling for high density integration. Atomically flat surface together with the absence of dangling bonds make 2D semiconductors free from carrier scattering caused by surface roughness, so that 2D semiconductors based transistors could outperform silicon devices in scaling limitation. A number of studies have been made in field effect transistors (FET), a central building element for logic circuit, by exploiting rnonolayer or few-layer 2D semiconductors as transport channel. So far, 2D layered materials used in FETs fabrication are mainly transition metal dichalco-genides (TMDs) of 2D molybdenum disulfide (MoS_2) and selenium tungsten (WSe_2). However, it has been demonstrated that MoS_2 is an undesirable material for high performance electronics applications because of heavier electron effective mass (m~* = 0.45 m_0) and low room temperature mobility of 50 ~ 200 cm~2V~(-1)S~(-1). The reported ultrathin MoS_2 channels show low carrier mobility of μ ~ 1-50 cm~2V~(-1)s~(-1). Several strategies have been demonstrated to improve the performance of ultrathin MoS_2 FETs, including exploiting high k dielectrics or decreasing the contact barrier. Multilayer MoS_2 on Al_2O_3 substrate show improved mobility of μ > 100 cm~2V~(-1)s~(-1) and good sub-threshold swings. Encapsulating MoS_2 in high-K dielectric or a polymer electrolyte enhanced the mobility up to ~160 cm~2V~(-1)s~(-1). With PMMA/Al_2O_3 bilayer dielectric, the mobility of multilayer MoS_2 FETs is increased to 500 cm~2V~(-1)s~(-1), however, the intrinsic mechanism for this mobility improvement is still not well understood. Very recently, two-terminal measurements of few-layer black phosphorus FETs show a carrier mobility of 284 cm~2V~(-1)s~(-1) at room temperature, which is much higher than that of MoS_2 FETs. However, few layer black phosphorus is less stable than graphene and MoS_2. In general, it is very challenging to enhance carrier mobilities of layered semiconductor devices.
机译:类石墨烯的二维(2D)层状半导体为硅时代之后的下一代纳米电子器件提供了广阔的前景。这些二维层状半导体具有独特的尺寸,超薄厚度和原子平面度的结构特征,对于电子设备的小型化和高性能具有吸引力。 2D结构与基于硅的COMS处理兼容,例如用于大规模制造的光刻。超薄厚度可更好地控制导电性,并大幅缩小器件尺寸,以实现高密度集成。原子平坦的表面以及不存在的悬空键使2D半导体免受表面粗糙度引起的载流子散射,因此基于2D半导体的晶体管在尺寸限制方面可以胜过硅器件。通过利用rnonolayer或几层2D半导体作为传输通道,对场效应晶体管(FET)进行了许多研究,FET是逻辑电路的主要组成部分。到目前为止,在FET制造中使用的2D层状材料主要是2D二硫化钼(MoS_2)和硒钨(WSe_2)的过渡金属二卤化物(TMD)。然而,已经证明,MoS_2由于具有更高的电子有效质量(m〜* = 0.45 m_0)和50〜200 cm〜2V〜(-1)S〜的低室温迁移率,因此不适合用于高性能电子应用。 (-1)。报道的超薄MoS_2通道的载流子迁移率较低,仅为μ〜1-50 cm〜2V〜(-1)s〜(-1)。已经证明了几种提高超薄MoS_2 FET性能的策略,包括利用高k电介质或减小接触势垒。 Al_2O_3衬底上的多层MoS_2的迁移率提高了μ> 100 cm〜2V〜(-1)s〜(-1),并具有良好的亚阈值摆幅。将MoS_2封装在高K介电质或聚合物电解质中可将迁移率提高到〜160 cm〜2V〜(-1)s〜(-1)。使用PMMA / Al_2O_3双层电介质,多层MoS_2 FET的迁移率增加到500 cm〜2V〜(-1)s〜(-1),但是,对于提高迁移率的内在机理仍然不甚了解。最近,对几层黑磷FET的两端测量显示,其在室温下的载流子迁移率为284 cm〜2V〜(-1)s〜(-1),远高于MoS_2 FET的迁移率。但是,很少有一层黑磷比石墨烯和MoS_2不稳定。通常,提高分层半导体器件的载流子迁移率是非常具有挑战性的。

著录项

  • 来源
    《Advanced Materials》 |2014年第38期|6587-6593|共7页
  • 作者单位

    State Key Laboratory of Robotics and System Harbin Institute of Technology Harbin 150080, China ,School of Materials Science and Engineering Harbin Institute of Technology Harbin 150080, China;

    State Key Laboratory of Robotics and System Harbin Institute of Technology Harbin 150080, China;

    Condensed Matter Science and Technology Institute Harbin Institute of Technology Harbin ,Department of Mathematics and Materials Research Institute the Pennsylvania State University University Park, Pennsylvania 16802, USA;

    State Key Laboratory of Robotics and System Harbin Institute of Technology Harbin 150080, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号