首页> 外文期刊>Advanced Materials >Leveraging the Ambipolar Transport in Polymeric Field-Effect Transistors via Blending with Liquid-Phase Exfoliated Graphene
【24h】

Leveraging the Ambipolar Transport in Polymeric Field-Effect Transistors via Blending with Liquid-Phase Exfoliated Graphene

机译:通过与液相剥离石墨烯混合利用聚合物场效应晶体管中的双极性传输。

获取原文
获取原文并翻译 | 示例
           

摘要

Emerging technological demands require more and more the development of semiconducting materials suitable for ambipolar field-effect transistors (FETs) as potential active components for organic complementary metal-oxide semiconductor (CMOS) to ultimately enable the development of robust, low-noise, low-power organic electronics. For a simple device fabrication process, single metal source and drain electrodes are preferred. Thus efficient ambipolar FETs can be ideally achieved by using symmetric electrodes and sophisticated single component semiconducting molecules with narrow bandgaps, i.e., lower than 2 eV, designed in such a way to be capable of transporting both electrons and holes under suitable biasing conditions and device configuration. Conversely, asymmetric electrodes having different work function (WF) can be employed to inject different charges in the active layer of the device, although the fabrication procedure is more cumbersome since it requires multiple steps. An alternative approach relies on the use of bilayers of semiconductors with high and low electron affinity (so called n-type and p-type) by choosing the materials carefully according to the relative position of their highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbitals (LUMO) levels. The combination of semiconductors in a bilayer provides a great opportunity to overcome the high injection barrier for one type of charge carrier when a single electrode material is employed, and renders the synthesis of the building block less challenging. However, the main disadvantage remains the need of controlled deposition of two layers on the top of each other. Alternatively, ambipolar transport was achieved by blending unipolar n- and p-type materials either by co-evaporation or co-deposition from solutions resulting in an interpenetrating network of both materials. The concept of blending materials was not only used for obtaining ambipolar devices but also for improving the device performance benefiting from the properties brought by each component, as well as to incorporate more functions in a single device. Graphene is one among the most interesting candidates that can be embedded in polymer matrices to improve the polymer performances. Graphene is a well-defined functional, 2D ambipolar material with a mobility for charge carriers exceeding 15 000 cm~2 V~(-1) s~(-1) even under ambient conditions, thus outperforming any organic semiconductor or even silicon. Despite its exceptional optical, mechanical and electronic properties, the greatest challenge in graphene research remains the ability to process it in large quantities and high quality making use of up-scalable methods. Among the various proposed methods, liquid-phase exfoliation is an extremely versatile and easily accessible procedure to produce graphene with a high yield starting from graphite powder. Moreover, graphene is a zero-bandgap semiconductor: to impart to this 2D material a capacity to switch on and off, one can either confine it in space by generating graphene nanoribbons, or having it interacting with molecular components that can act as dopant. In this regard, graphene has been used for application in FETs by modulating its properties via blend with p-type semiconductors.
机译:新兴的技术要求越来越需要开发适合双极性场效应晶体管(FET)的半导体材料,作为有机互补金属氧化物半导体(CMOS)的潜在活性成分,以最终实现坚固,低噪声,低噪声的开发。电力有机电子。对于简单的器件制造工艺,单个金属源电极和漏电极是优选的。因此,理想的高效双极性FET可以通过使用对称电极和带隙窄(即低于2 eV)的复杂单组分半导体分子来实现,其设计方式应使其能够在合适的偏置条件和器件配置下既传输电子又传输空穴。相反,具有不同功函数(WF)的不对称电极可用于在器件的有源层中注入不同的电荷,尽管制造过程较麻烦,因为它需要多个步骤。另一种方法是通过使用具有高电子亲和力和低电子亲和力的半导体双层(所谓的n型和p型),根据材料的最高占据分子轨道(HOMO)和最低未占据分子轨道的相对位置来仔细选择材料分子轨道(LUMO)的水平。当使用单一电极材料时,双层中半导体的组合为克服一种类型的电荷载流子的高注入势垒提供了很大的机会,并且使结构单元的合成具有较低的挑战性。然而,主要缺点仍然是需要在彼此的顶部上控制两层的沉积。或者,通过从溶液中共蒸发或共沉积混合单极性n型和p型材料来实现双极性传输,从而导致两种材料互穿网络。混合材料的概念不仅用于获得双极性器件,而且还受益于每个组件带来的特性以及用于在单个器件中合并更多功能的器件,从而提高了器件性能。石墨烯是可以嵌入聚合物基质中以改善聚合物性能的最有趣的候选物之一。石墨烯是定义明确的功能性2D双极性材料,即使在环境条件下,对于超过15 000 cm〜2 V〜(-1)s〜(-1)的电荷载流子,迁移率也很高,因此胜过任何有机半导体甚至硅。尽管石墨烯具有出色的光学,机械和电子性能,但石墨烯研究的最大挑战仍然是使用可升级的方法进行大量高质量处理的能力。在提出的各种方法中,液相剥离是一种极其通用且易于操作的方法,可以从石墨粉开始以高收率生产石墨烯。此外,石墨烯是一种零带隙半导体:为了赋予这种2D材料导通和截止的能力,人们可以通过产生石墨烯纳米带将其限制在空间中,也可以使其与可以充当掺杂剂的分子组分相互作用。在这方面,通过与p型半导体混合来调节石墨烯的性能,石墨烯已被用于FET。

著录项

  • 来源
    《Advanced Materials》 |2014年第28期|4814-4819|共6页
  • 作者单位

    Nanochemistry Laboratory, ISIS &. icFRC Universite de Strasbourg & CNRS 8 Allee Gaspard Monge 67000, Strasbourg, France;

    Nanochemistry Laboratory, ISIS &. icFRC Universite de Strasbourg & CNRS 8 Allee Gaspard Monge 67000, Strasbourg, France;

    CNR-Istituto per la Microelettronica e Microsistemi (IMM) I-40129, Bologna, Italy;

    Nanochemistry Laboratory, ISIS &. icFRC Universite de Strasbourg & CNRS 8 Allee Gaspard Monge 67000, Strasbourg, France,Istituto per la Sintesi Organica e la Fotoreattivita - Consiglio Nazionale delle Ricerche Via Gobetti, 101 40129, Bologna, Italy;

    Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS) UMR 7504 CNRS-Universite de Strasbourg (UdS) 23, Rue du Loess 67037 Cedex 08, Strasbourg, France;

    CNR-Istituto per la Microelettronica e Microsistemi (IMM) I-40129, Bologna, Italy;

    Institut de Physique et Chimie des Materiaux de Strasbourg (IPCMS) UMR 7504 CNRS-Universite de Strasbourg (UdS) 23, Rue du Loess 67037 Cedex 08, Strasbourg, France;

    Nanochemistry Laboratory, ISIS &. icFRC Universite de Strasbourg & CNRS 8 Allee Gaspard Monge 67000, Strasbourg, France;

    Istituto per la Sintesi Organica e la Fotoreattivita - Consiglio Nazionale delle Ricerche Via Gobetti, 101 40129, Bologna, Italy;

    Nanochemistry Laboratory, ISIS &. icFRC Universite de Strasbourg & CNRS 8 Allee Gaspard Monge 67000, Strasbourg, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号