首页> 外文期刊>Advanced Materials >Single-Crystal C_(60) Needle/CuPc Nanoparticle Double Floating-Gate for Low-Voltage Organic Transistors Based Non-Volatile Memory Devices
【24h】

Single-Crystal C_(60) Needle/CuPc Nanoparticle Double Floating-Gate for Low-Voltage Organic Transistors Based Non-Volatile Memory Devices

机译:单晶C_(60)针/ CuPc纳米粒子双浮栅,用于基于低压有机晶体管的非易失性存储器件

获取原文
获取原文并翻译 | 示例
           

摘要

Field-effect transistor (FET)-type memory devices have been widely investigated recently because of their non-destructive read-out property, single transistor realization, and excellent compatibility with complementary metal oxide semiconductor (CMOS) devices. Among them, floating-gate memory based on a FET structure has an electrically isolated conducting gate, which can be used as charge storage sites for charging or discharging during the programming and erasing processes. Precise control of the amount of charge stored in the specific floating-gate to set the bits of a memory cell could solve the fundamental scaling-down problem and meet the requirement for high-density memory devices. Therefore, a discrete floating-gate utilizing nanostructured materials rather than a conventional planar floating-gate can determine the size and density of charge-trapping elements in a uniform distribution for future superior high-density memory. The following possibilities have already been employed to fashion nanostructured floating-gate devices: ⅰ) thermal evaporation of thin metal layers or metal islands (nanoparticles (NPs)); ⅱ) chem-isorbed or electrostatic self-assembled metal monolayers; ⅲ) block polymer/NP composites; ⅳ) carbon-based charge trapping materials, such as C_(60) or graphene. However, the above floating-gate-based memory devices generally utilize a single floating-gate that stores only one kind of charge (hole or electron) to signify a "1" or "0" digital state as one bit of information. To meet the future demand for product miniaturization and high density, memory properties such as memory window, retention, endurance, and integration still need to be enhanced. If two floating-gates were assembled in one device, the memory device could potentially store data at higher density in the same physical space during the non-volatile mode and also suppress leakage of the stored charge as a result of the band offset or Coulomb repulsion between the upper and lower floating-gates. On the other hand, memories that allow the coexistence of trapping charges in both polarities (ambi-polar trapping) result in a large bi-directional threshold voltage shift and correspondingly large memory window for designing multi-level flash memory. However, optimizing the memory materials and structures to enable continuous scaling has remained a significant challenge until now. In particular, the detailed mechanism and design principles for organic nonvolatile memory with a double floating-gate are not clear.
机译:场效应晶体管(FET)型存储器件由于其无损读出特性,单晶体管实现以及与互补金属氧化物半导体(CMOS)器件的出色兼容性,最近得到了广泛研究。其中,基于FET结构的浮栅存储器具有电隔离的导电门,可以将其用作电荷存储位置,以便在编程和擦除过程中进行充电或放电。精确控制存储在特定浮栅中的电荷量以设置存储单元的位可以解决基本的缩小问题,并满足对高密度存储器件的要求。因此,利用纳米结构材料而不是常规的平面浮栅的分立浮栅可以确定电荷俘获元件的大小和密度,并且均匀分布,以用于将来的高级高密度存储器。以下方式已经被用于形成纳米结构的浮栅器件:ⅰ)薄金属层或金属岛(纳米粒子(NP))的热蒸发; ⅱ)化学吸附或静电自组装金属单层; ⅲ)嵌段聚合物/ NP复合材料; ⅳ)碳基电荷捕获材料,例如C_(60)或石墨烯。但是,上述基于浮栅的存储设备通常利用单个浮栅,该浮栅仅存储一种电荷(空穴或电子)以将“ 1”或“ 0”数字状态表示为一位信息。为了满足将来对产品小型化和高密度的需求,仍然需要增强诸如存储器窗口,保留性,耐久性和集成性之类的存储器属性。如果在一个设备中组装了两个浮栅,则该存储设备可能会在非易失模式下以更高的密度将数据存储在同一物理空间中,并且还可以抑制由于带偏移或库仑排斥而导致的存储电荷泄漏在上下浮动门之间。另一方面,允许在两个极性中同时存在俘获电荷的存储器(双极性俘获)导致大的双向阈值电压偏移和相应的大的存储器窗口,用于设计多级闪存。但是,到目前为止,优化存储材料和结构以实现连续缩放一直是一项重大挑战。特别是,具有双浮栅的有机非易失性存储器的详细机制和设计原理尚不清楚。

著录项

  • 来源
    《Advanced Materials》 |2015年第1期|27-33|共7页
  • 作者单位

    Department of Chemical Engineering National Taiwan University Taipei 10617, Taiwan, R.O.C.;

    Department of Chemical Engineering National Taiwan University Taipei 10617, Taiwan, R.O.C.;

    Department of Chemical and Materials Engineering National Central University Taoyuan 32001, Taiwan, R.O.C.;

    Department of Chemical Engineering National Taiwan University Taipei 10617, Taiwan, R.O.C.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号