首页> 外文期刊>Advanced Materials >Superelastic Multimaterial Electronic and Photonic Fibers and Devices via Thermal Drawing
【24h】

Superelastic Multimaterial Electronic and Photonic Fibers and Devices via Thermal Drawing

机译:通过热拉伸的超弹性多材料电子和光子纤维及设备

获取原文
获取原文并翻译 | 示例
           

摘要

Electronic and photonic fiber devices that can sustain large elastic deformation are becoming key components in a variety of fields ranging from healthcare to robotics and wearable devices. The fabrication of highly elastic and functional fibers remains however challenging, which is limiting their technological developments. Simple and scalable fiber-processing techniques to continuously codraw different materials within a polymeric structure constitute an ideal platform to realize functional fibers and devices. Despite decades of research however, elastomeric materials with the proper rheological attributes for multimaterial fiber processing cannot be identified. Here, the thermal drawing of hundreds-of-meters long multimaterial optical and electronic fibers and devices that can sustain up to 500% elastic deformation is demonstrated. From a rheological and microstructure analysis, thermoplastic elastomers that can be thermally drawn at high viscosities (above 10(3) Pa s), allowing the encapsulation of a variety of microstructured, soft, and rigid materials are identified. Using this scalable approach, fiber devices combining high performance, extreme elasticity, and unprecedented functionalities, allowing novel applications in smart textiles, robotics, or medical implants, are demonstrated.
机译:可以承受较大弹性变形的电子和光子纤维设备正在成为从医疗保健到机器人技术和可穿戴设备等各个领域的关键组件。然而,高弹性和功能性纤维的制造仍然具有挑战性,这限制了它们的技术发展。简单且可扩展的纤维加工技术可以在聚合物结构中连续共挤出不同的材料,是实现功能性纤维和设备的理想平台。然而,尽管进行了数十年的研究,仍无法确定具有适合多材料纤维加工的流变特性的弹性体材料。在此,展示了可以承受高达500%弹性变形的数百米长的多材料光纤和电子纤维以及设备的热拉伸。通过流变学和微观结构分析,可以确定可以在高粘度(高于10(3)Pa s)下热拉伸的热塑性弹性体,从而可以封装各种微观结构,柔软和刚性的材料。使用这种可扩展的方法,展示了结合了高性能,极高弹性和空前功能的光纤设备,这些设备可在智能纺织品,机器人技术或医疗植入物中得到新颖的应用。

著录项

  • 来源
    《Advanced Materials》 |2018年第27期|1707251.1-1707251.8|共8页
  • 作者单位

    Ecole Polytech Fed Lausanne, Inst Mat, Lab Photon Mat & Fibre Devices FIMAP, CH-1015 Lausanne, Switzerland;

    Ecole Polytech Fed Lausanne, Inst Mat, Lab Photon Mat & Fibre Devices FIMAP, CH-1015 Lausanne, Switzerland;

    Ecole Polytech Fed Lausanne, Inst Mat, Lab Photon Mat & Fibre Devices FIMAP, CH-1015 Lausanne, Switzerland;

    Ecole Polytech Fed Lausanne, Inst Mat, Lab Photon Mat & Fibre Devices FIMAP, CH-1015 Lausanne, Switzerland;

    Ecole Polytech Fed Lausanne, Inst Mat, Lab Photon Mat & Fibre Devices FIMAP, CH-1015 Lausanne, Switzerland;

    Swiss Fed Labs Mat Sci & Technol Empa, CH-9014 St Gallen, Switzerland;

    Swiss Fed Labs Mat Sci & Technol Empa, CH-9014 St Gallen, Switzerland;

    Ecole Polytech Fed Lausanne, Inst Mat, Lab Photon Mat & Fibre Devices FIMAP, CH-1015 Lausanne, Switzerland;

    Ecole Polytech Fed Lausanne, Inst Mat, Lab Photon Mat & Fibre Devices FIMAP, CH-1015 Lausanne, Switzerland;

    Ecole Polytech Fed Lausanne, Inst Mat, Lab Photon Mat & Fibre Devices FIMAP, CH-1015 Lausanne, Switzerland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    advanced fibers; rheology; stretchable electronics; thermal drawing; thermoplastic elastomers;

    机译:高级纤维;流变学;可拉伸电子学;热拉伸;热塑性弹性体;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号