...
首页> 外文期刊>Advanced Functional Materials >A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing
【24h】

A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing

机译:用于神经启发计算的忆阻性纳米颗粒/有机混合突触

获取原文
获取原文并翻译 | 示例

摘要

A large effort is devoted to the research of new computing paradigms associated with innovative nanotechnologies that should complement and/or propose alternative solutions to the classical Von Neumann/CMOS (complementary metal oxide semiconductor) association. Among various propositions, spiking neural network (SNN) seems a valid candidate. i) In terms of functions, SNN using relative spike timing for information coding are deemed to be the most effective at taking inspiration from the brain to allow fast and efficient processing of information for complex tasks in recognition or classification. ii) In terms of technology, SNN may be able to benefit the most from nanodevices because SNN architectures are intrinsically tolerant to defective devices and performance variability. Here, spike-timing-dependent plasticity (STDP), a basic and primordial learning function in the brain, is demonstrated with a new class of synapstor (synapse-transistor), called nanoparticle organic memory field-effect transistor (NOMFET). This learning function is obtained with a simple hybrid material made of the self-assembly of gold nanoparticles and organic semiconductor thin films. Beyond mimicking biological synapses, it is also demonstrated how the shape of the applied spikes can tailor the STDP learning function. Moreover, the experiments and modeling show that this synapstor is a memristive device. Finally, these synapstors are successfully coupled with a CMOS platform emulating the pre- and postsynaptic neurons, and a behavioral macromodel is developed on usual device simulator.
机译:致力于研究与创新纳米技术相关的新计算范例,这些范例应补充和/或提出对经典冯·诺依曼/ CMOS(互补金属氧化物半导体)协会的替代解决方案。在各种命题中,尖峰神经网络(SNN)似乎是有效的候选人。 i)在功能方面,使用相对尖峰定时进行信息编码的SNN被认为是最有效的方法,可以从大脑获得灵感,从而可以快速有效地处理识别或分类中的复杂任务的信息。 ii)就技术而言,SNN可能会从纳米设备中获得最大收益,因为SNN架构本质上可以容忍有缺陷的设备和性能差异。在这里,通过一种新型的突触器(synapse-transistor),称为纳米粒子有机存储场效应晶体管(NOMFET),证明了依赖于时序定时的可塑性(STDP)在大脑中的基本和原始学习功能。这种学习功能是通过简单的混合材料获得的,该材料由金纳米颗粒和有机半导体薄膜的自组装制成。除了模仿生物突触外,还证明了所施加尖峰的形状如何能够调整STDP学习功能。此外,实验和建模表明该突触是忆阻装置。最后,这些突触器成功地与模拟突触前和突触后神经元的CMOS平台耦合,并在常规设备模拟器上开发了行为宏模型。

著录项

  • 来源
    《Advanced Functional Materials 》 |2012年第3期| p.609-616| 共8页
  • 作者单位

    Institute for Electronics Microelectronics and Nanotechnology (IEMN) CNRS, University of Lille BP60069, avenue Poincare, F-59652cedex Villeneuve d'Ascq, France;

    Institute for Electronics Microelectronics and Nanotechnology (IEMN) CNRS, University of Lille BP60069, avenue Poincare, F-59652cedex Villeneuve d'Ascq, France;

    CEA, LIST/LCE (Advanced Computer technologies and Architectures), Bat. 528, F-91191, Gif-sur-Yvette, France;

    CEA, LIST/LCE (Advanced Computer technologies and Architectures), Bat. 528, F-91191, Gif-sur-Yvette, France;

    Institute de Microelectronica de Sevilla (IMSE) CNM-CSIC, Av. Americo Vespucio s, 41092 Sevilla, Spain;

    Institute de Microelectronica de Sevilla (IMSE) CNM-CSIC, Av. Americo Vespucio s, 41092 Sevilla, Spain;

    Institute for Electronics Microelectronics and Nanotechnology (IEMN) CNRS, University of Lille BP60069, avenue Poincare, F-59652cedex Villeneuve d'Ascq, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号