...
首页> 外文期刊>Advanced Functional Materials >Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices
【24h】

Signatures of Quantized Energy States in Solution-Processed Ultrathin Layers of Metal-Oxide Semiconductors and Their Devices

机译:溶液处理的金属氧化物半导体及其器件的超薄层中的量子能态签名

获取原文
获取原文并翻译 | 示例
           

摘要

Physical phenomena such as energy quantization have to-date been overlooked in solution-processed inorganic semiconducting layers, owing to heterogeneity in layer thickness uniformity unlike some of their vacuum-deposited counterparts. Recent reports of the growth of uniform, ultrathin (<5 nm) metal-oxide semiconductors from solution, however, have potentially opened the door to such phenomena manifesting themselves. Here, a theoretical framework is developed for energy quantization in inorganic semiconductor layers with appreciable surface roughness, as compared to the mean layer thickness, and present experimental evidence of the existence of quantized energy states in spin-cast layers of zinc oxide (ZnO). As-grown ZnO layers are found to be remarkably continuous and uniform with controllable thicknesses in the range 2-24 nm and exhibit a characteristic widening of the energy bandgap with reducing thickness in agreement with theoretical predictions. Using sequentially spin-cast layers of ZnO as the bulk semiconductor and quantum well materials, and gallium oxide or organic self-assembled monolayers as the barrier materials, two terminal electronic devices are demonstrated, the current-voltage characteristics of which resemble closely those of double-barrier resonant-tunneling diodes. As-fabricated all-oxide/hybrid devices exhibit a characteristic negative-differential conductance region with peak-to-valley ratios in the range 2-7.
机译:由于与某些真空沉积对应物不同的层厚度均匀性的不均匀性,迄今为止,在固溶处理的无机半导体层中,诸如能量量化之类的物理现象已被忽略。然而,最近有关溶液中生长均匀,超薄(<5 nm)金属氧化物半导体的报道为这种现象的出现打开了大门。在此,为与平均层厚度相比具有可观表面粗糙度的无机半导体层中的能量量化建立了理论框架,并提供了在氧化锌(ZnO)的旋铸层中存在量化的能量态的实验证据。发现生长中的ZnO层非常连续且均匀,厚度可控制在2-24 nm之间,并且与理论预测一致,在减小厚度的情况下,能带隙呈现出特征性的加宽。使用依次旋铸的ZnO层作为体半导体和量子阱材料,以及氧化镓或有机自组装单层作为势垒材料,展示了两个终端电子器件,其电流-电压特性与双倍电子器件的电流-电压特性非常相似。势垒谐振隧道二极管。所制造的全氧化物/混合器件表现出特征性的负差分电导区域,其峰谷比在2-7范围内。

著录项

  • 来源
    《Advanced Functional Materials》 |2015年第11期|1727-1736|共10页
  • 作者单位

    Department of Physics Blackett Laboratory Imperial College London London SW7 2AZ, UK;

    Department of Physics Blackett Laboratory Imperial College London London SW7 2AZ, UK,Dutch Polymer Institute (DPI) P. O. Box 902, 5600, AX, Eindhoven, The Netherlands;

    Materials Science and Engineering Division of Physical Sciences and Engineering King Abdullah University of Science and Technology Thuwal 23955-6900, Saudi Arabia;

    Cornell High Energy Synchrotron Source Cornell University Ithaca, NY 14850, USA;

    Department of Physics Blackett Laboratory Imperial College London London SW7 2AZ, UK;

    Department of Physics Blackett Laboratory Imperial College London London SW7 2AZ, UK;

    Foundation for Research and Technology Hellas (FORTH) Institute of Electronic Structure and Lasers (IESL) Heraklion Crete and Institute of Chemical Engineering Sciences (ICEHT) Patras, Greece;

    Foundation for Research and Technology Hellas (FORTH) Institute of Electronic Structure and Lasers (IESL) Heraklion Crete and Institute of Chemical Engineering Sciences (ICEHT) Patras, Greece;

    Department of Materials Royal School of Mines Imperial College London London SW7 2AZ, UK;

    Foundation for Research and Technology Hellas (FORTH) Institute of Electronic Structure and Lasers (IESL) Heraklion Crete and Institute of Chemical Engineering Sciences (ICEHT) Patras, Greece;

    Materials Science and Engineering Division of Physical Sciences and Engineering King Abdullah University of Science and Technology Thuwal 23955-6900, Saudi Arabia;

    Department of Physics Blackett Laboratory Imperial College London London SW7 2AZ, UK;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号