...
首页> 外文期刊>Advanced Functional Materials >Molecular Heterojunctions of Oligo(phenylene ethynylene)s with Linear to Cruciform Framework
【24h】

Molecular Heterojunctions of Oligo(phenylene ethynylene)s with Linear to Cruciform Framework

机译:线性至十字形骨架的低聚亚苯基亚乙炔的分子异质结

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Electrical transport properties of molecular junctions are fundamentally affected by the energy alignment between molecular frontier orbitals (highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO)) and Fermi level (or work function) of electrode metals. Dithiafulvene (DTF) is used as substituent group to the oligo(phenylene ethynylene) (OPE) molecular wires and different molecular structures based on OPE3 backbone (with linear to cruciform framework) are achieved, with viable molecular orbitals and HOMO-LUMO energy gaps. OPE3, OPE3-DTF, and OPE3-tetrathiafulvalene (TTF) can form good self-assembled monolayers (SAMs) on Au substrates. Molecular heterojunctions based on these SAMs are investigated using conducting probe-atomic force microscopy with different tips (Ag, Au, and Pt) and Fermi levels. The calibrated conductance values follow the sequence OPE3-TTF > OPE3-DTF > OPE3 irrespective of the tip metal. Rectification properties (or diode behavior) are observed in case of the Ag tip for which the work function is furthest from the HOMO levels of the OPE3s. Quantum chemical calculations of the transmission qualitatively agree with the experimental data and reproduce the substituent effect of DTF. Zero-bias conductance, and symmetric or asymmetric couplings to the electrodes are investigated. The results indicate that improved fidelity of molecular transport measurements may be achieved by systematic studies of homologues series of molecular wires applying several different metal electrodes.
机译:电极分子的分子前沿轨道(最高占据分子轨道(HOMO)或最低未占据分子轨道(LUMO))与费米能级(或功函数)之间的能量排列从根本上影响分子结的电传输性质。将二硫富富烯(DTF)用作低聚(亚苯基亚乙炔基)(OPE)分子线的取代基,并基于OPE3主链(具有线性至十字形骨架)获得了不同的分子结构,具有可行的分子轨道和HOMO-LUMO能隙。 OPE3,OPE3-DTF和OPE3-四硫富瓦烯(TTF)可以在Au基底上形成良好的自组装单层(SAMs)。使用具有不同尖端(Ag,Au和Pt)和费米能级的探针原子力显微镜对基于这些SAM的分子异质结进行了研究。校准的电导值遵循顺序OPE3-TTF> OPE3-DTF> OPE3,与尖端金属无关。对于Ag尖端,其功函距离OPE3的HOMO级别最远时,可以观察到整流特性(或二极管的行为)。透射的量子化学计算定性地与实验数据一致,并再现了DTF的取代作用。研究了零偏压电导以及与电极的对称或不对称耦合。结果表明,可以通过系统研究应用几种不同金属电极的分子线的同系物系列来提高分子运输测量的保真度。

著录项

  • 来源
    《Advanced Functional Materials》 |2015年第11期|1700-1708|共9页
  • 作者单位

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark,Institute of Semiconductors Chinese Academy of Sciences Beijing 100083, P.R. China;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    National Center for Nanoscience and Technology Beijing 100190, P.R. China;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    National Center for Nanoscience and Technology Beijing 100190, P.R. China;

    Beijing National Laboratory for Molecular Sciences Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing 100190, P.R. China;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    National Center for Nanoscience and Technology Beijing 100190, P.R. China;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

    Nano-Science Center and Department of Chemistry University of Copenhagen Universitetsparken 5, DK-2100 Copenhagen O, Denmark;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号