首页> 外文期刊>Advanced Functional Materials >Anti-liquid-Interfering and Bacterially Antiadhesive Strategy for Highly Stretchable and Ultrasensitive Strain Sensors Based on Cassie-Baxter Wetting State
【24h】

Anti-liquid-Interfering and Bacterially Antiadhesive Strategy for Highly Stretchable and Ultrasensitive Strain Sensors Based on Cassie-Baxter Wetting State

机译:基于Cassie-Baxter润湿状态的高伸展和超细菌株传感器的抗液体干扰和细菌抗粘附策略

获取原文
获取原文并翻译 | 示例
           

摘要

As a large number of strain sensors are put into practical use, their stability should be considered, especially in harsh environments containing water or microorganisms, which could affect strain sensing. Herein, a novel strategy to overcome liquid interference is proposed. The strain sensor is constructed with a sandwich architecture through layer-by-layer (LBL) spray-coating of a 3-(aminopropyl)triethoxysilane (APTES) bonding layer and multi-walled carbon nanotubes/graphene (MWCNT/G) conductive layers on an elastomeric polydimethysiloxane (PDMS) substrate, and is further decorated with silver (Ag) nanoparticles and the (heptadecafluoro-1,1,2,2-tetradecyl) trimethoxysilane (FAS, F in short) to obtain a F/Ag/MWCNG/G-PDMS (FAMG) strain sensor. The superhydrophobicity and underwater oleophobicity of the outer cover layer causes this FAMG strain sensor surface to exhibit stable strain sensing resistant to liquid interference upon stretching in the Cassie-Baxter wetting state, and resistance to bacterial adhesion (Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)). The sensor attains ultrasensitivity (with a maximum gauge factor of 1989 in the condition of liquid interference), broad strain range (0.1-170%), fast response time (150 ms), and stable response after 1000 stretching-releasing cycles. The ultrasensitivity is provided by propagation of cracks in MWCNT/G conductive layers and terminal fracture of the intermediate separating layers (APTES/MWCNT/G). The microbridge effect of MWCNTs and slippage of APTES/MWCNT/G provide a large strain range. The FAMG strain sensor is successfully used to monitor a series of human activities and an electronic bird under artificial rain and bacterial droplets, indicating the potential use of this sensor in complex environments.
机译:随着大量应变传感器进行实际使用,应考虑其稳定性,特别是在含水或微生物的恶劣环境中,这可能影响应变感测。这里,提出了一种克服液体干扰的新策略。应变传感器通过逐层(LBL)喷涂的三明治体系结构构成,通过三(氨基丙基)三乙氧基硅烷(APTES)粘合层和多壁碳纳米管/石墨烯(MWCNT / G)导电层的层弹性体聚二甲基硅氧烷(PDMS)底物,并进一步用银(Ag)纳米颗粒和(庚二氟-1,1,2,2-十四烷基)三甲氧基硅烷(简称Fas,F)以获得F / Ag / MWCNG / G-PDMS(FAMG)应变传感器。外覆盖层的超疏水性和水下疏烟性导致该FAMG应变传感器表面在拉伸在Cassie-Baxter润湿状态下,对液体干扰具有稳定的应变感应,以及对细菌粘附的抗性(金黄色葡萄球菌)和大肠杆菌(Aureus)和大肠杆菌大肠杆菌(大肠杆菌))。传感器达到超敏感度(在液体干扰条件下具有1989年的最大规格因子),宽应变范围(0.1-170%),快速响应时间(150毫秒),1000次拉伸释放循环后稳定的响应。通过MWCNT / G导电层中的裂缝和中间分离层的末端破裂的裂缝(Aptes / MwCnt / g)传播来提供超敏感性。 MWCNT和Aptes / MWCNT / g的滑动的微细触控效应提供了大的应变范围。 Famg应变传感器成功地用于监测人工雨和细菌液滴下的一系列人类活动和电子鸟,表明该传感器在复杂环境中的潜在使用。

著录项

  • 来源
    《Advanced Functional Materials》 |2020年第23期|2000398.1-2000398.11|共11页
  • 作者单位

    Guangzhou Univ Sch Chem & Chem Engn Guangzhou 510006 Peoples R China;

    Guangzhou Univ Sch Chem & Chem Engn Guangzhou 510006 Peoples R China;

    Guangzhou Univ Sch Chem & Chem Engn Guangzhou 510006 Peoples R China;

    Beijing Normal Univ Coll Chem Beijing Key Lab Energy Convers & Storage Mat Beijing 100875 Peoples R China;

    Guangzhou Univ Sch Chem & Chem Engn Guangzhou 510006 Peoples R China;

    Univ Macau Inst Appl Phys & Mat Engn Minist Educ Joint Key Lab Ave Univ Taipa 999078 Macau Peoples R China;

    Univ Macau Inst Appl Phys & Mat Engn Minist Educ Joint Key Lab Ave Univ Taipa 999078 Macau Peoples R China;

    Univ Tennessee Dept Chem & Biomol Engn ICL Knoxville TN 37996 USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    bacterial adhesion; large strain range; liquid interference; ultrasensitivity; wearable strain sensor;

    机译:细菌粘附;大应变范围;液体干扰;超敏反应;可穿戴应变传感器;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号