首页> 外文期刊>Advanced engineering informatics >Collision detection between point clouds using an efficient k-d tree implementation
【24h】

Collision detection between point clouds using an efficient k-d tree implementation

机译:使用有效的k-d树实现点云之间的碰撞检测

获取原文
获取原文并翻译 | 示例

摘要

Context: An important task in civil engineering is the detection of collisions of a 3D model with an environment representation. Existing methods using the structure gauge provide an insufficient measure because the model either rotates or because the trajectory makes tight turns through narrow passages. This is the case in either automotive assembly lines or in narrow train tunnels. Objective: Given two point clouds, one of the environment and one of a model and a trajectory with six degrees of freedom along which the model moves through the environment, find all colliding points of the environment with the model within a certain clearance radius. Method: This paper presents two collision detection (CD) methods called kd-CD and kd-CD-simple and two penetration depth (PD) calculation methods called kd-PD and kd-PD-fast. All four methods are based on searches in a k-d tree representation of the environment. The creation of the k-d tree, its search methods and other features will be explained in the scope of their use to detect collisions and calculate depths of penetration. Results: The algorithms are benchmarked by moving the point cloud of a train wagon with 2.5 million points along the point cloud of a 1144 m long train track through a narrow tunnel with overall 18.92 million points. Points where the wagon collides with the tunnel wall are visually highlighted with their penetration depth. With a safety margin of 5 cm kd-PD-simple finds all colliding points on its trajectory which is sampled into 19,392 positions in 77 s on a standard desktop machine of 1.6 GHz. Conclusion: The presented methods for collision detection and penetration depth calculation are shown to solve problems for which the structure gauge is an insufficient measure. The underlying k-d tree is shown to be an effective data structure for the required look-up operations.
机译:上下文:土木工程中的一项重要任务是检测3D模型与环境表示的碰撞。现有的使用结构量规的方法无法提供足够的量度,因为模型要么旋转,要么因为轨迹通过狭窄的通道急转弯。在汽车装配线或狭窄的火车隧道中都是这种情况。目标:给定两个点云,一个环境,一个模型,以及一个具有六个自由度的轨迹,模型沿着该轨迹在环境中移动,找到在一定游隙半径内该模型与环境的所有碰撞点。方法:本文介绍了两种称为简单kd-CD和kd-CD的碰撞检测(CD)方法以及两种称为kd-PD和kd-PD-fast的穿透深度(PD)计算方法。所有这四种方法均基于对环境的k-d树表示形式的搜索。 k-d树的创建,其搜索方法和其他功能将在其用于检测碰撞和计算穿透深度的范围内进行说明。结果:通过将250万个点的火车车厢的点云沿着1144 m长的火车轨道的点云通过一条狭窄的隧道(总共1 892万个点)移动,对算法进行基准测试。货车与隧道壁碰撞的点以其穿透深度在视觉上突出显示。安全余量为5厘米,kd-PD可轻松找到其轨迹上的所有碰撞点,这些碰撞点在1.6 GHz的标准台式机上在77 s内采样到19,392个位置。结论:提出了用于碰撞检测和穿透深度计算的方法,以解决结构规范不足以解决的问题。底层的k-d树显示为所需查找操作的有效数据结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号