首页> 外文期刊>Advanced engineering informatics >Tree-Structure Ensemble General Regression Neural Networks applied to predict the molten steel temperature in Ladle Furnace
【24h】

Tree-Structure Ensemble General Regression Neural Networks applied to predict the molten steel temperature in Ladle Furnace

机译:树-结构集成通用回归神经网络预测钢包炉内钢水温度

获取原文
获取原文并翻译 | 示例

摘要

To control the molten steel temperature in a Ladle Furnace accurately, it is necessary to build a precise (i.e. accurate and good generalized) temperature prediction model. To solve this problem, ensemble modeling methods have been applied to predict the temperature. Now, in the production process, large-scale data with more helpful information are sampled, which provides possibilities to improve the precision of the temperature prediction. Although most of the existing ensemble temperature models have strong learning ability, they are not suitable for the large-scale data. In this paper, to solve the large-scale issue, the Tree-Structure Ensemble General Regression Neural Networks (TSE-GRNNs) method is proposed. Firstly, small-scale sample subsets are constructed based on the regression tree algorithm. Secondly, GRNN sub-models are built on sample subsets, which can be designed very quickly and cannot converge to poor solutions according to local minima of the error criterion. Then, the TSE-GRNNs method is applied to establish a temperature model. Experiments show that the TSE-GRNNs temperature model is more precise than the other existing temperature models, and meets the requirements of the RMSE and the maximum error of the molten steel temperature prediction in Ladle Furnace.
机译:为了准确地控制钢包炉中的钢水温度,有必要建立一个精确的(即准确和良好的广义的)温度预测模型。为了解决这个问题,已经采用了集成建模方法来预测温度。现在,在生产过程中,将对具有更多有用信息的大规模数据进行采样,这为提高温度预测的精度提供了可能性。尽管现有的大多数集成温度模型都具有很强的学习能力,但它们不适合大规模数据。本文针对大规模问题,提出了树结构集成广义回归神经网络(TSE-GRNNs)方法。首先,基于回归树算法构造小规模样本子集。其次,GRNN子模型建立在样本子集上,可以快速设计,并且根据误差准则的局部最小值无法收敛到较差的解。然后,采用TSE-GRNNs方法建立温度模型。实验表明,TSE-GRNNs温度模型比现有的其他温度模型更为精确,满足了钢包加热炉的RMSE要求和钢水温度预测的最大误差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号