首页> 外文期刊>Advanced engineering informatics >Rapid data quality oriented laser scan planning for dynamic construction environments
【24h】

Rapid data quality oriented laser scan planning for dynamic construction environments

机译:快速数据质量导向的激光扫描规划,用于动态施工环境

获取原文
获取原文并翻译 | 示例

摘要

In construction environments, laser-scanning technologies can perform rapid spatial data collection to monitor construction progress, control construction quality, and support decisions about how to streamline field activities. However, even experienced surveyors cannot guarantee comprehensive laser scanning data collection in the field due to its constantly changing environment, wherein a large number of objects are subject to different data-quality requirements. The current practice of manually planned laser scanning often produces data of insufficient coverage, accuracy, and details. While redundant data collection can improve data quality, this process can also be inefficient and time-consuming. There are many studies on automatic sensor planning methods for guided laser-scanning data collection in the literature. However, fewer studies exist on how to handle exponentially large search space of laser scan plans that consider data quality requirements, such as accuracy and levels of details (LOD). This paper presents a rapid laser scan planning method that overcomes the computational complexity of planning laser scans based on diverse data quality requirements in the field. The goal is to minimize data collection time, while ensuring that the data quality requirements of all objects are satisfied. An analytical sensor model of laser scanning is constructed to create a "divide-and-conquer" strategy for rapid laser scan planning of dynamic environments wherein a graph is generated having specific data quality requirements (e.g., levels of accuracy and detail of certain objects) in terms of nodes and spatial relationships between these requirements as edges (e.g., distance, line-of-sight). A graph-coloring algorithm then decomposes the graph into sub-graphs and identifies "local" optimal laser scan plans of these sub-graphs. A solution aggregation algorithm then combines the local optimal plans to generate a plan for the entire site. Runtime analysis shows that the computation time of the proposed method does not increase exponentially with site size. Validation results of multiple case studies show that the proposed laser scan planning method can produce laser-scanning data with higher quality than data collected by experienced professionals, and without increasing the data collection time.
机译:在施工环境中,激光扫描技术可以执行快速的空间数据收集,以监视施工进度,控制施工质量并支持有关如何简化现场活动的决策。但是,即使是经验丰富的测量师,由于其不断变化的环境也无法保证在现场进行全面的激光扫描数据收集,在该环境中,大量对象受到不同的数据质量要求。手动计划的激光扫描的当前实践通常会产生覆盖范围,准确性和细节不足的数据。尽管冗余数据收集可以提高数据质量,但此过程也可能效率低下且耗时。文献中有许多关于用于引导激光扫描数据收集的自动传感器计划方法的研究。但是,关于如何处理考虑数据质量要求(例如准确性和详细程度(LOD))的激光扫描计划的指数级搜索空间的研究很少。本文提出了一种快速的激光扫描计划方法,该方法克服了基于现场各种数据质量要求而计划激光扫描的计算复杂性。目标是最大程度地减少数据收集时间,同时确保满足所有对象的数据质量要求。构造了激光扫描的分析传感器模型,以创建“分而治之”的策略,用于动态环境的快速激光扫描计划,其中生成的图具有特定的数据质量要求(例如,某些对象的准确性和详细程度)就节点和这些要求之间的空间关系而言(例如距离,视线)。图着色算法然后将图分解为子图,并标识这些子图的“局部”最佳激光扫描计划。然后,解决方案聚合算法将局部最优计划组合在一起,以生成整个站点的计划。运行时分析表明,该方法的计算时间并没有随站点大小呈指数增长。多个案例研究的验证结果表明,所提出的激光扫描计划方法可以产生质量比经验丰富的专业人员收集的激光扫描数据更高的激光扫描数据,并且不会增加数据收集时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号