首页> 外文期刊>Advanced engineering informatics >An IFC schema extension and binary serialization format to efficiently integrate point cloud data into building models
【24h】

An IFC schema extension and binary serialization format to efficiently integrate point cloud data into building models

机译:IFC模式扩展和二进制序列化格式,可将点云数据有效集成到构建模型中

获取原文
获取原文并翻译 | 示例

摘要

In this paper we suggest an extension to the Industry Foundation Classes (IFC) model to integrate point cloud datasets. The proposal includes a schema extension to the core model allowing the storage of points, either as Cartesian coordinates, points in parametric space of associated building element surfaces or as discrete height fields projected as grids onto building elements. To handle the considerable amounts of data generated in the process of scanning building structures, we present intelligent compression approaches combined with the Hierarchical Data Format (HDF) as an efficient serialization and an alternative to clear text encoded ISO 10303 part 21 files. Based on prototypical implementations we show results of various serialization options and their impacts on storage efficiency. In this proposal the deepened semantic relationships have been favoured over compression ratios. Nevertheless, with various near-lossless layers of compression and binary serialization applied, a compression ratio of up to 67.7% is obtained for a building model with integrated point clouds, compared to the raw source data. The binary serialization is able to handle hundreds of millions of points, out of which specific spatial and semantic subsets can rapidly be extracted due to the containerized hierarchical storage model and association to building elements. The authors advocate the use of binary storage for sizeable point cloud scans, but also show how especially the grid discretization can result into usable points cloud segments embedded into text-based IFC models.
机译:在本文中,我们建议对行业基础分类(IFC)模型进行扩展,以集成点云数据集。该提案包括对核心模型的架构扩展,允许将点存储为笛卡尔坐标,相关建筑元素表面的参数空间中的点或作为网格投影到建筑元素上的离散高度场。为了处理在扫描建筑结构过程中生成的大量数据,我们提出了将智能压缩方法与分层数据格式(HDF)结合使用,以作为一种有效的序列化方法,以及明文编码的ISO 10303第21部分文件的替代方法。基于典型的实现,我们显示了各种序列化选项的结果及其对存储效率的影响。在此建议中,深化的语义关系优于压缩率。尽管如此,与原始源数据相比,在应用了各种接近无损的压缩层和二进制序列化的情况下,具有集成点云的建筑模型的压缩率高达67.7%。二进制序列化能够处理数亿个点,由于容器化的分层存储模型以及与建筑元素的关联,因此可以快速提取特定的空间和语义子集。作者主张将二进制存储用于可观的点云扫描,但同时也展示了网格离散化如何特别地导致嵌入基于文本的IFC模型中的可用点云段。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号