首页> 外文期刊>Advanced engineering informatics >Dynamic neural network method-based improved PSO and BR algorithms for transient probabilistic analysis of flexible mechanism
【24h】

Dynamic neural network method-based improved PSO and BR algorithms for transient probabilistic analysis of flexible mechanism

机译:基于动态神经网络方法的改进PSO和BR算法用于柔性机构的瞬态概率分析

获取原文
获取原文并翻译 | 示例

摘要

To improve the computing efficiency and precision of transient probabilistic analysis of flexible mechanism, dynamic neural network method (DNNM)-based improved particle swarm optimization (PSO)/Bayesian regularization (BR) (called as PSO/BR-DNNM) is proposed based on the developed DNNM with the integration of extremum response surface method (ERSM) and artificial neural network (ANN). The mathematical model of DNNM is established based on ANN on the foundation of investigating ERSM. Aiming at the high nonlinearity and strong coupling characteristics of limit state function of flexible mechanism, accurate weights and thresholds of PSO/BR-DNNM function are discussed by searching initial weights and thresholds based on the improved PSO and training final weights and thresholds by the BR-based training performance function. The probabilistic analysis of two-link flexible robot manipulator (TFRM) was investigated with the proposed method. Reliability degree, distribution characteristics and major factors (section sizes of link-2) of TFRM are obtained, which provides a useful reference for a more effective TFRM design. Through the comparison of three methods (Monte Carlo method, DNNM, PSO/BR-DNNM), it is demonstrated that PSO/BR-DNNM reshapes the probability of flexible mechanism probabilistic analysis and improves the computing efficiency while keeping acceptable computational precision. Moreover, the proposed method offers a useful insight for reliability-based design optimization of flexible mechanism and thereby also enriches the theory and method of mechanical reliability design.
机译:为了提高柔性机构瞬态概率分析的计算效率和精度,提出了基于动态神经网络方法(DNNM)的改进粒子群优化(PSO)/贝叶斯正则化(BR)算法(称为PSO / BR-DNNM)。开发的DNNM具有极值响应面方法(ERSM)和人工神经网络(ANN)的集成。在研究ERSM的基础上,基于神经网络建立了DNNM的数学模型。针对柔性机构极限状态函数的高非线性和强耦合特性,通过在改进的PSO的基础上搜索初始权重和阈值,并通过BR训练最终权重和阈值,讨论了PSO / BR-DNNM函数的准确权重和阈值。基础的训练表现功能。利用该方法研究了两连杆柔性机器人操纵器(TFRM)的概率分析。获得了TFRM的可靠性,分布特征和主要因素(link-2的节大小),为更有效的TFRM设计提供了有益的参考。通过对三种方法(Monte Carlo方法,DNNM,PSO / BR-DNNM)的比较,证明PSO / BR-DNNM重塑了灵活机制概率分析的可能性,并在保持可接受的计算精度的同时提高了计算效率。此外,所提出的方法为基于柔性机构的可靠性设计优化提供了有益的见识,从而丰富了机械可靠性设计的理论和方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号