首页> 外文期刊>Advanced engineering informatics >Soft sensor based on stacked auto-encoder deep neural network for air preheater rotor deformation prediction
【24h】

Soft sensor based on stacked auto-encoder deep neural network for air preheater rotor deformation prediction

机译:基于堆叠式自动编码器深度神经网络的软传感器对空气预热器转子变形的预测

获取原文
获取原文并翻译 | 示例

摘要

Soft sensors have been widely used in industrial processes over the past two decades because they use easy-to-measure process variables to predict difficult-to-measure ones. Some success has been achieved by the dominant traditional methods of modeling soft sensors based on statistics, such as principal components analysis (PCA) and partial least square (PLS), but such sensors usually become inaccurate and inefficient when processing strong nonlinear data. In this paper, a new soft sensor modeling approach is proposed based on a deep learning network. First, stacked auto-encoders (SAEs) are employed to extract high-level feature representations of the input data. In the process of training each layer of a SAE, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) is adopted to optimize the weights parameters. Then, a support vector regression (SVR) is added to predict the target value on the basis of the features obtained from the SAE. To improve the model performance, Genetic Algorithm (GA) is used to obtain the optimal parameters of the SVR. To evaluate the proposed method, a soft sensor model for estimating the rotor deformation of air preheaters in a thermal power plant boiler is studied. The experimental results demonstrate that the soft sensor based on the SAE-SVR algorithm is more effective than the existing methods are.
机译:由于软传感器使用易于测量的过程变量来预测难以测量的变量,因此在过去的二十年中已广泛用于工业过程。传统的基于统计数据对软传感器建模的传统方法已经取得了一些成功,例如主成分分析(PCA)和偏最小二乘(PLS),但是在处理强非线性数据时,此类传感器通常变得不准确且效率低下。本文提出了一种基于深度学习网络的新型软传感器建模方法。首先,采用堆叠式自动编码器(SAE)来提取输入数据的高级特征表示。在训练SAE的每一层的过程中,采用内存有限的Broyden-Fletcher-Goldfarb-Shanno算法(L-BFGS)来优化权重参数。然后,基于从SAE获得的特征,添加支持向量回归(SVR)以预测目标值。为了提高模型性能,遗传算法(GA)用于获得SVR的最佳参数。为了评估该方法,研究了一种软传感器模型,用于估算火力发电厂锅炉中空气预热器的转子变形。实验结果表明,基于SAE-SVR算法的软传感器比现有方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号