首页> 外文期刊>Advanced engineering informatics >Automated segmentation of RGB-D images into a comprehensive set of building components using deep learning
【24h】

Automated segmentation of RGB-D images into a comprehensive set of building components using deep learning

机译:RGB-D图像的自动分割成一套综合建筑组件,使用深度学习

获取原文
获取原文并翻译 | 示例

摘要

Building information modeling (BIM) has a semantic scope that encompasses all building systems, e.g. architectural, structural, mechanical, electrical, and plumbing. Automated, comprehensive digital modeling of buildings will require methods for semantic segmentation of images and 3D reconstructions capable of recognizing all building component classes. However, prior building component recognition methods have had limited semantic coverage and are not easily combined or scaled. Here we show that a deep neural network can semantically segment RGB-D (i.e. color and depth) images into 13 building component classes simultaneously despite the use of a small training dataset with only 1490 object instances. For this task, the method achieves an average intersection over union (IoU) of 0.5. The dataset was designed using a common building taxonomy to ensure comprehensive semantic coverage and was collected from a diversity of buildings to ensure intra-class diversity. As a consequence of its semantic scope, it was necessary to perform pre-segmentation and 3D to 2D projection as leverage for dataset annotation. In creating our deep learning pipeline, we found that transfer learning, class balancing, and prevention of overfitting effectively overcame the dataset's borderline adequate class representation. Our results demonstrate how the semantic coverage of a building component recognition method can be scaled to include a larger diversity of building systems. We anticipate our method to be a starting point for broadening the scope of the semantic segmentation methods involved in digital modeling of buildings.
机译:建筑信息建模(BIM)具有语义范围,包括所有建筑系统,例如,建筑,结构,机械,电气和管道。自动化,全面的建筑物的数字建模将需要用于图像的语义分割和3D重建的方法,能够识别所有构建组件类。但是,先前的构建组件识别方法具有有限的语义覆盖范围,并且不容易组合或缩放。在这里,尽管使用具有只有1490个对象实例的小型训练数据集,但深神经网络可以将RGB-D(即颜色和深度)图像分组为13个构建组件类。对于此任务,该方法达到了0.5的联盟(IOU)的平均交叉点。数据集使用共同的建筑分类来设计,以确保综合语义覆盖,并从建筑物的多样性收集,以确保课堂多样性。由于其语义范围的结果,有必要将预分割和3D投影执行作为数据集注释的杠杆。在创建我们的深度学习管道时,我们发现转移学习,阶级平衡和预防有效地克服了数据集的边框适量类表示。我们的结果表明,可以扩展建筑物组件识别方法的语义覆盖如何,以包括更大的建筑系统多样性。我们预测我们的方法是扩大建筑物数字建模中涉及的语义分割方法的范围的起点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号