首页> 外文期刊>Advanced engineering informatics >A novel axle temperature forecasting method based on decomposition, reinforcement learning optimization and neural network
【24h】

A novel axle temperature forecasting method based on decomposition, reinforcement learning optimization and neural network

机译:基于分解,加固学习优化和神经网络的新型轴温预测方法

获取原文
获取原文并翻译 | 示例

摘要

Axle temperature forecasting technology is important for monitoring the status of the train bogie and preventing the hot axle and other dangerous accidents. In order to achieve high-precision forecasting of axle temperature, a hybrid axle temperature time series forecasting model based on decomposition preprocessing method, parameter optimization method, and the Back Propagation (BP) neural network is proposed in this study. The modeling process consists of three phases. In stage Ⅰ, the empirical wavelet transform (EWT) method is used to preprocess the original axle temperature series by decomposing them into several subseries. In stage Ⅱ, the Q-learning algorithm is used to optimize the initial weights and thresholds of the BP neural network. In stage Ⅲ, the Q-BPNN network is used to build the forecasting model and complete predicting all subseries. And the final forecasting results are generated by combining all prediction results of subseries. By comparing all results over three case predictions, it can be concluded that: (a) the proposed Q-learning based parameter optimization method is effective in improving the accuracy of the BP neural network and works better than the traditional population-based optimization methods; (b) the proposed hybrid axle temperature forecasting model can get accurate prediction results in all cases and provides the best accuracy among eight general models.
机译:轴温预测技术对于监控火车转向架的地位并防止热桥和其他危险事故非常重要。为了实现轴温度的高精度预测,在本研究中提出了一种基于分解预处理方法,参数优化方法和后传播(BP)神经网络的混合轴温度时间序列预测模型。建模过程由三个阶段组成。在Ⅰ期,通过将它们分解为多个子系列,经验小波变换(EWT)方法用于预处理原始轴温度系列。在Ⅱ期,Q学习算法用于优化BP神经网络的初始权重和阈值。在第三阶段,Q-BPNN网络用于构建预测模型并完成预测所有子系列。并通过组合所有预测结果来生成最终预测结果。通过比较三个案例预测的所有结果,可以得出结论:(a)所提出的基于Q学习的参数优化方法有效地提高了BP神经网络的准确性,并且优于基于传统的基于人口的优化方法; (b)所提出的混合轴温度预测模型可以在所有情况下获得准确的预测结果,并提供八种一般模型中的最佳精度。

著录项

  • 来源
    《Advanced engineering informatics》 |2020年第4期|101089.1-101089.13|共13页
  • 作者单位

    Institute of Artificial Intelligence & Robotics (IAIR) Key Laboratory of Traffic Safety on Track of Ministry of Education School of Traffic & Transportation Engineering Central South University Changsha 410075 Hunan China;

    Institute of Artificial Intelligence & Robotics (IAIR) Key Laboratory of Traffic Safety on Track of Ministry of Education School of Traffic & Transportation Engineering Central South University Changsha 410075 Hunan China;

    Institute of Artificial Intelligence & Robotics (IAIR) Key Laboratory of Traffic Safety on Track of Ministry of Education School of Traffic & Transportation Engineering Central South University Changsha 410075 Hunan China;

    Institute of Artificial Intelligence & Robotics (IAIR) Key Laboratory of Traffic Safety on Track of Ministry of Education School of Traffic & Transportation Engineering Central South University Changsha 410075 Hunan China;

    Institute of Artificial Intelligence & Robotics (IAIR) Key Laboratory of Traffic Safety on Track of Ministry of Education School of Traffic & Transportation Engineering Central South University Changsha 410075 Hunan China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Axle temperature forecasting; Hybrid model; Empirical wavelet transform; Q-learning algorithm; Parameter optimization; Q-BPNN network;

    机译:轴温预测;混合模型;经验小波变换;Q学习算法;参数优化;Q-BPNN网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号